全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东北地区两次雷暴中NBE的活动特征观测

, PP. 848-861

Keywords: 东北地区,双极性窄脉冲事件,雷暴,闪电活动

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用具有双极性窄脉冲事件(NarrowBipolarEvents,NBE)识别能力的三站闪电到达时间差定位系统,对东北地区两次雷暴中观测到的上百例NBE的活动特征进行了研究报道.两次雷暴中只发现了正极性的NBE,其VLF/LF脉冲辐射强度与地闪回击相当,波形特征与其他地区报道的NBE波形特征基本相同.对166例距离观测站约150km以内的NBE波形进行特征统计表明,其初始峰宽度、初始峰半宽、初始峰与过冲峰之比分别为(7.8±1.5)μs,(4.6±1.0)μs和(2.1±0.6).高度定位结果表明,两次雷暴中NBE的平均发生高度分别为9.6和7.4km,所对应的不同时段内电离层平均反射高度为89和78km.两次雷暴中NBE活动与普通闪电的时间关系说明NBE倾向于出现在雷暴中闪电活动较为活跃的时段.从雷暴0711中雷达回波(PPI图示以及雷达回波垂直剖面图示)反映的雷暴对流强度与NBE定位之间的空间关系看出,NBE选择性地聚集发生在特定对流核中高雷达回波区的外围区域,并且多数集中在对流核移动方向的前部,NBE的空间位置随时间的变化与特定对流核心随雷暴的移动具有较好的一致性.

References

[1]  31 Nag A, Rakov V A. Compact intracloud lightning discharges: 1. Mechanism of electromagnetic radiation and modeling. J Geophys Res, 2010, 115: D20102, doi: 10.1029/2010JD014235
[2]  32 祝宝友, 陶善昌, 刘亦风. 合肥地区地闪特征. 高原气象, 2002, 21: 296-302
[3]  33 Han F, Cummer S A. Midlatitude daytime D region ionosphere variations measured from radio atmospherics. J Geophys Res, 2010, 115: A10314, doi: 10.1029/2010JA015715
[4]  34 Han F, Cummer S A. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales. J Geophys Res, 2010, 115: A09323, doi: 10.1029/2010JA015437
[5]  35 Fierro A O, Shao X M, Hamlin T, et al. Evolution of eyewall convective events as indicated by intra-cloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina. Mon Weather Rev, 2010, doi: 10.1175/2010MWR3532.1
[6]  36 Rison W, Thomas R J, Krehbiel P R, et al. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys Res Lett, 1999, 26: 3573-3576
[7]  37 H?ller H, Betz H D, Schmidt K, et al. Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany. Atmos Chem Phys, 2009, 9: 7795-7824, doi: 10.5194/acp-9-7795-2009
[8]  7 Suszcynsky D M, Heavner M J. Narrow bipolar events as indicators of thunderstorm convective strength. Geophys Res Lett, 2003, 30: 1879, doi: 10.1029/2003GL017834
[9]  8 Suszcynsky D M, Davis S, Jacobson A, et al. VHF global lightning and severe storm monitoring from space: Storm-level characterization of VHF lightning emissions. EOS Trans. AGU 2001 Fall Meeting Prog, 2001, And Abstr 82, No. 47, F143
[10]  9 Jacobson A R, Heavner M J. Comparison of narrow bipolar events with ordinary lightning as proxies for severe convection. Mon Weather Rev, 2005, 133: 1144-1154
[11]  10 Jacobson A R, Boeck W, Jeffery C. Comparison of narrow bipolar events with ordinary lightning as proxies for the microwave-radiometry ice-scattering signature. Mon Weather Rev, 2007, 135: 1354-1363
[12]  11 Wiens K C, Hamlin T, Harlin J, et al. Relationships among narrow bipolar events, ‘‘total’’ lightning, and radar-inferred convective strength in Great Plains thunderstorms. J Geophys Res, 2008, 113: D05201, doi: 10.1029/2007JD009400
[13]  12 Lapp J L, Saylor J R. Correlation between lightning types. Geophys Res Lett, 2007, 34: L11804, doi: 10.1029/2007GL029476
[14]  13 Shao X M, Stanley M, Regan A, et al. Total lightning observations with the new and improved Los Alamos Sferic Array (LASA). J Atmos Ocean Technol, 2006, 23: 1273-1288
[15]  14 Nag A, Rakov V A, Tsalikis D, et al. On phenomenology of compact intracloud lightning discharges. J Geophys Res, 2010, 115: D14115, doi: 10.1029/2009JD012957
[16]  15 Sharma S R, Fernando M, Vernon C. Narrow positive bipolar radiation from lightning observed in Sri Lanka. J Atmos Sol-Terr Phys, 2008, 70: 1251-1260, dio: 10.1016/j.jastp.2008.03.002
[17]  16 Azlinda A N, Fernando M, Baharudin Z A, et al. Characteristics of narrow bipolar pulses observed in Malaysia. J Atmos Sol-Terr Phys, 2010, doi: 10.1016/j.jastp.2010.02.006
[18]  17 祝宝友, 陶善昌, 谭涌波. 伴随超强VHF辐射的闪电双极性窄脉冲初步观测. 气象学报, 2007, 665: 124-130
[19]  18 Zhu B, Zhou H, Ma M, et al. Observations of narrow bipolar events in East China. J Atmos Sol-Terr Phys, 2010, 72: 271-278
[20]  19 王彦辉, 张广庶, 郄秀书, 等. 雷暴中的特殊放电现象—双极性窄脉冲(NBE)观测研究. 第七届中国国际防雷论坛论文摘编. 2008
[21]  20 张广庶, 王彦辉, 郄秀书, 等. 基于时差法三位定位系统对闪电放电过程的观测研究. 中国科学: 地球科学, 2010, 40: 523-534
[22]  21 吴亭, 董万胜, 刘恒毅. 双极性窄脉冲电场波形特征. 高原气象, 2011, 30: 823-830
[23]  22 Wu T, Dong W, Zhang Y, et al. Comparison of positive and negative compact intracloud discharges. J Geophys Res, 2011, 116: D03111, doi: 10.1029/2010JD015233
[24]  23 Wu T, Dong W, Zhang Y, et al. Discharge height of lightning narrow bipolar events. J Geophys Res, 2012, doi: 10.1029/2011JD017054
[25]  24 Liu H, Dong W, Wu T, et al. Observation of compact intracloud discharges using VHF broadband interferometers. J Geophys Res, 2012, 117: D01203, doi: 10.1029/2011JD016185
[26]  25 Rakov V A, Rachidi F. Overview of recent progress in lightning research and lightning protection. IEEE Trans Electromagn Compat, 2009, 51: 428-442
[27]  26 Smith D A, Heavner M J, Jacobson A R, et al. A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records. Radio Sci, 2004, 39: RS1010, doi: 10.1029/2002RS002790
[28]  27 Willett J C, Bailey J C, Krider E P. A class of unusual lightning electric field waveforms with very strong high-frequency radiation. J Geophys Res, 1989, 94: 255-267
[29]  28 Cooray V, Lundquist S. Effects of propagation on the rise times and the initial peaks of radiation fields from return strokes. Radio Sci, 1983, 18: 409-415
[30]  38 王东方, 宣越健, 刘继明, 等. 大兴安岭林区地闪放电特征的观测与分析. 大气科学, 2011, 35: 147-156
[31]  39 Marshall T C, Stolzenburg M, Maggio C R, et al. Observed electric fields associated with lightning initiation. Geophys Res Lett, 2005, 32: L03813, doi: 10.1029/2004GL021802
[32]  40 Jacobson A R. How do the strongest radio pulses from thunderstorms relate to lightning flashes? J Geophys Res, 2003, 108(D24): 4778, doi: 10.1029/2003JD003936
[33]  41 Gurevich A V, Zybin K P, Roussel-DupréR A. Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers. Phys Lett A, 1999, 254: 79-87
[34]  42 Gurevich A V, Zybin K P. High energy cosmic ray particles and the most powerful discharges in thunderstorm atmosphere. Phys Lett A, 2004, 329: 341-347
[35]  43 Gurevich A V, Mitko G G, Antonova V P, et al. An intracloud discharge caused by extensive atmospheric shower. Phys Lett A, 2009, 373: 3550-3553
[36]  1 Holden D N, Munson C P, Devenport J C. Satellite observations of transionospheric pulse pairs. Geophys Res Lett, 1995, 22: 889-892
[37]  2 LeVine D M. Source of the strongest RF radiation from lightning. J Geophys Res, 1980, 85: 4091-4095
[38]  3 Smith D A, Shao X M, Holden D N, et al. A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J Geophys Res, 1999, 104: 4189-4212
[39]  4 Light T E L, Jacobson A R. Characteristics of impulsive VHF lightning signals observed by the FORTE satellite. J Geophys Res, 2002, 107(D24): 4756, doi: 10.1029/2001JD001585
[40]  5 Gurevich A V, Zybin K P. Runaway breakdown and the mysteries of lightning. Phys Today May, 2005, 37-43
[41]  6 Jacobson A R, Light T E L. Bimodal radio frequency pulse distribution of intracloud-lightning signals recorded by the FORTE satellite. J Geophys Res, 2003, 108(D9): 4266, doi: 10.1029/2002JD002613
[42]  29 Zhu B, Zhou H, Ma M, et al. Estimation of channel characteristics of narrow bipolar events based on the transmission-line model. J Geophys Res, 2010, 115: D19105, doi: 10.1029/2009JD012021
[43]  30 Watson S S, Marshall T C. Current propagation model for a narrow bipolar pulse. Geophys Res Lett, 2007, 34: L04816, doi: 10.1029/2006GL027426

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133