13 Key R M, Liyungu A K, Njamu F M, et al. The western arm of the Lufilian arc in NW Zambia and its potential for copper mineralization. J Afr Earth Sci, 2001, 33: 503-528
[5]
14 Cailteux J L H, Kampunzu A B H, Batumike M J, et al. Lithostratigraphic position and petrographic characteristics of R. A. T. (“Roches Argilo-Talqueuses”) subgroup, Neoproterozoic katangan belt (Congo). J Afr Earth Sci, 2005, 42: 82-94
[6]
15 Bowring S, Myrow P, Landing E, et al. Geochronological constraints on terminal Neoproterozoic events and the rise of metazoan. Geophys Res Abs, 2003, 5: 13219
[7]
16 Zhou C M, Tucker R, Xiao S, et al. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 2004, 32: 437-440
20 Xu B, Xiao S H, Zou H B, et al. SHRIMP zircon U-Pb age constraints on Neoproterozoic quruqtagh diamictites in NW China. Precambrian Res, 2009, 168: 247-258
25 Dobrzinski N, Bahlburg H, Strauss H, et al. Geochemical proxies applied to the Neoproterozoic glacial succession on the Yangtze platform, south China. In: Jenkins G L, McMenamin M A S, McKay C P, eds. The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophys Monograph Ser, 2004, 146: 13-32
[17]
26 Rieu R, Allen P A, Plotze M, et al. Climatic cycles during a neoproterozoic “snowball” glacial epoch. Geology, 2007, 35: 299-302
[18]
27 Goldberg K, Humayun M. The applicability of the chemical index of alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol, 2010, 293: 175-183
38 Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ration. J Geol, 1986, 94: 635-650
[30]
39 Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299: 715-717
[31]
40 McLennan S M. Meathering and global denudation. J Geol, 1993, 101: 295-303
[32]
41 Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles. J Geol, 1989, 97: 129-147
[33]
42 Young G M, Nesbitt H W. Paleoclimatology and provenance of the glaciogenic gowganda formation(Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach. Geol Soc Am Bull, 1999, 111: 264
[34]
43 Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements(including REE)during Paleoproterozoic pedogenesis anddiagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim Cosmochim, 2000, 64: 2199-2220
[35]
44 Cullers R L, Podkovyrov V M. Geochemistry for the mesoperoterozoic lakhanda shales in southeastern Yakutia, Russia: Implicationsfor mineralogical and provenance control and recycling. Precambrian Res, 2000, 104: 77-93
[36]
45 Cullers R L. The source and origin of terrigenous sedimentary rocks in the mesoproterozoic Ui group, southeastern Russia. Precambrian Res, 2002, 117: 157-18
[37]
46 Wintsch R P, Kvale C M. Differential mobility of elements in burial diagenesis of siliciclastic rocks. J Sediment Res, 1994, 64: 349-36
[38]
47 Fedo C M, Young G M, Nesbitt H W, et al. Potassic and sodic metasomatism in the southern province of the Canadian shield: Evidence from the Paleoproterozoic serpent formation, huronian supergroup, Canada. Precambrian Res, 1997, 84: 17-36
[39]
48 Fedo C M, Young G M, Nesbitt H W. Paleoclimaticcontrol on the composition of the paleoproterozoic serpent formation, huronian supergroup, Canada: A greenhouse to icehouse transition. Precambrian Res, 1997b, 86: 201-223
[40]
49 Zhang C L, Li X H, Li Z X, et al. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications. Precambrian Res, 2007, 152: 149-169
51 Wani H, Mondal M E A. Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozoic sedimentary rocks of the Bastar craton, Indian peninsula: Implications on paleoweathering and Proterozoic crustal evolution. J Asian Earth Sci, 2010, 38: 220-232
44 Cullers R L, Podkovyrov V M. Geochemistry for the mesoperoterozoic lakhanda shales in southeastern Yakutia, Russia: Implicationsfor mineralogical and provenance control and recycling. Precambrian Res, 2000, 104: 77-93
[55]
45 Cullers R L. The source and origin of terrigenous sedimentary rocks in the mesoproterozoic Ui group, southeastern Russia. Precambrian Res, 2002, 117: 157-18
[56]
46 Wintsch R P, Kvale C M. Differential mobility of elements in burial diagenesis of siliciclastic rocks. J Sediment Res, 1994, 64: 349-36
[57]
47 Fedo C M, Young G M, Nesbitt H W, et al. Potassic and sodic metasomatism in the southern province of the Canadian shield: Evidence from the Paleoproterozoic serpent formation, huronian supergroup, Canada. Precambrian Res, 1997, 84: 17-36
[58]
48 Fedo C M, Young G M, Nesbitt H W. Paleoclimaticcontrol on the composition of the paleoproterozoic serpent formation, huronian supergroup, Canada: A greenhouse to icehouse transition. Precambrian Res, 1997b, 86: 201-223
[59]
49 Zhang C L, Li X H, Li Z X, et al. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications. Precambrian Res, 2007, 152: 149-169
51 Wani H, Mondal M E A. Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozoic sedimentary rocks of the Bastar craton, Indian peninsula: Implications on paleoweathering and Proterozoic crustal evolution. J Asian Earth Sci, 2010, 38: 220-232
6 Zheng Y F, Gong B, Zhao Z F, et al. Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during supercontinental rifting in south China: Implications for the snowball Earth event. Am J Sci, 2008, 308: 484-516
[66]
7 Hoffman P F, Kaufman A J, Halverson G P, et al. Comings and gongings of global galciation on a Neoproterozoic tropical platform in Namibia. GSA Today, 1998, 8: 1-9
[67]
8 Kaufman A L, Knoll A H, Narbonne G M. Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci, 1997, 95: 6600-6605
[68]
9 Fanning C M, Link P K. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello formation, southeastern Idaho. Geology, 2004, 32: 881-884
[69]
10 Lund K, Aleinkoff J N, Evans K V, et al. SHIMP U-Pb geochronology of Neoproterozoic Windermere supergroup, central Idaho: Implications for rifting of western lauerntia and synchroneity of Sturtian glacial deposits. GSA Bull, 2003, 115: 349-372
[70]
11 Condon D, Zhu M, Bowring S, et al. U-Pb ages from the Neoproterozoic doushantuo formation, China. Science, 2005, 308: 95-98
[71]
12 Zhang S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the doushantuo formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33: 473-476
[72]
63 Ma G G, Li H Q, Zhang Z C. An investigation of the age limits of the Sinian system in south China. CAGS Bull Yichang Inst Geol Miner Resources, 1984, 8: 1-29ace elements(including REE)during Paleoproterozoic pedogenesis anddiagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim Cosmochim, 2000, 64: 2199-2220
63 Ma G G, Li H Q, Zhang Z C. An investigation of the age limits of the Sinian system in south China. CAGS Bull Yichang Inst Geol Miner Resources, 1984, 8: 1-29 ?