全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

塔里木板块西南缘新元古代沉积相和冰期划分

, PP. 703-715

Keywords: 塔里木板块,新元古代,沉积相,化学蚀变指数,冰碛岩

Full-Text   Cite this paper   Add to My Lib

Abstract:

?通过对塔里木板块西南缘叶城地区南华系-埃迪卡拉系地层沉积相的划分和化学蚀变指数(CIA)分析,讨论南华系所记录的冰期特征.研究区南华系-埃迪卡拉系地层可划分出6个沉积相:山麓冲积扇相、湖泊相、冰成相、滨海相、浅海相以及泻湖相,该地区经历了一个由陆向海的演变过程,并以滨浅海相沉积为主.通过CIA值特征分析确立了研究区南华纪经历了2次明显的寒冷气候,可分别称为波龙冰期和雨塘冰期,表现为波龙组厚层冰碛岩和雨塘组较薄层冰碛岩沉积.波龙组冰期可能相当于库鲁克塔格地区特瑞艾肯冰期、阿克苏地区的尤尔美那克冰期和华南地区的南沱冰期,也即相当于全球性的Marinoan冰期,而雨塘组冰期可能相当于库鲁克塔格地区的汉格尔乔克冰期,即相当于纽芬兰地区的Gaskiers冰期.

References

[1]  3 李美俊, 王铁冠, 王春江. 新元古代“雪球”假说与生命演化的环境. 沉积学报, 2006, 24: 107-112
[2]  4 郑永飞. 新元古代岩浆活动与全球变化. 科学通报, 2003, 48: 1705-1720
[3]  5 储雪蕾. 新元古代的“雪球地球”. 矿物岩石地球化学通报, 2004, 23: 233-238
[4]  13 Key R M, Liyungu A K, Njamu F M, et al. The western arm of the Lufilian arc in NW Zambia and its potential for copper mineralization. J Afr Earth Sci, 2001, 33: 503-528
[5]  14 Cailteux J L H, Kampunzu A B H, Batumike M J, et al. Lithostratigraphic position and petrographic characteristics of R. A. T. (“Roches Argilo-Talqueuses”) subgroup, Neoproterozoic katangan belt (Congo). J Afr Earth Sci, 2005, 42: 82-94
[6]  15 Bowring S, Myrow P, Landing E, et al. Geochronological constraints on terminal Neoproterozoic events and the rise of metazoan. Geophys Res Abs, 2003, 5: 13219
[7]  16 Zhou C M, Tucker R, Xiao S, et al. New constraints on the ages of Neoproterozoic glaciations in south China. Geology, 2004, 32: 437-440
[8]  17 储雪蕾, 张启锐, 陈福坤, 等. 南华-埃迪卡拉系界线的锆石U-Pb年龄. 科学通报, 2005, 50: 600-602
[9]  18 寇晓威, 王宇, 卫魏, 等. 塔里木板块上元古界阿勒通沟组和黄羊沟组: 新识别的冰期和间冰期? 岩石学报, 2008, 24: 2863-2868
[10]  19 徐备, 寇晓威, 宋彪, 等. 塔里木板块上元古界火山岩SHRIMP定年及其对新元古代冰期时代的制约. 岩石学报, 2008, 12: 2857-2862
[11]  20 Xu B, Xiao S H, Zou H B, et al. SHRIMP zircon U-Pb age constraints on Neoproterozoic quruqtagh diamictites in NW China. Precambrian Res, 2009, 168: 247-258
[12]  21 高振家, 王务严, 彭昌文, 等. 新疆阿克苏-柯坪地区埃迪卡拉系. 乌鲁木齐: 新疆人民出版社, 1985. 1-123
[13]  22 高振家, 陈克强. 新疆的南华系及我国南华系的几个地质问题——纪念恩师王曰伦先生诞辰一百周年. 地质调查与研究, 2003, 26: 8-14
[14]  23 陈鹏, 徐备, 郑海飞. “雪球”假说与塔里木板块新元古代冰川事件. 新疆地质, 2004, 22: 87-93
[15]  24 何秀彬, 徐备, 袁志云. 新疆柯坪地区新元古代晚期地层碳同位素组成及其对比. 科学通报, 2007, 52: 107-113
[16]  25 Dobrzinski N, Bahlburg H, Strauss H, et al. Geochemical proxies applied to the Neoproterozoic glacial succession on the Yangtze platform, south China. In: Jenkins G L, McMenamin M A S, McKay C P, eds. The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophys Monograph Ser, 2004, 146: 13-32
[17]  26 Rieu R, Allen P A, Plotze M, et al. Climatic cycles during a neoproterozoic “snowball” glacial epoch. Geology, 2007, 35: 299-302
[18]  27 Goldberg K, Humayun M. The applicability of the chemical index of alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol, 2010, 293: 175-183
[19]  28 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 2003, 4: 539-543
[20]  29 冯连君, 储雪蕾, 张同钢, 等. 莲沱砂岩—南华大冰期前气候转冷的沉积记录. 岩石学报, 2006, 22: 2387-2393
[21]  30 王自强, 尹崇玉, 高林志, 等. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论. 地质论评, 2006, 5: 577-585
[22]  31 刘兵, 徐备, 孟祥英, 等. 塔里木板块新元古代地层化学蚀变指数研究及其意义. 岩石学报, 2007, 23: 2863-2868
[23]  32 丁海峰, 马东升, 姚春彦, 等. 新疆果子沟埃迪科拉纪冰碛岩沉积环境. 科学通报, 2009, 4: 3726-3737
[24]  33 马世鹏, 汪玉珍, 方锡廉. 西昆仑山北坡的埃迪卡拉系. 新疆地质, 1989, 7: 68-79
[25]  34 马世鹏, 汪玉珍, 方锡廉. 西昆山北坡陆台盖层型元古代宇的基本特征. 新疆地质, 1991, 9: 59-70
[26]  35 张传林, 叶海敏, 王爱国, 等. 塔里木西南缘新元古代辉绿岩及玄武岩的地球化学特征: 新元古代超大陆(Rodinia)裂解的证据. 岩石学报, 2004, 20: 473-482
[27]  36 王爱国, 张传林, 赵宇, 等. 塔里木西南缘南华系下部沉积作用及其构造意义. 地层学杂志, 2004, 28: 248-256
[28]  37 宗文明, 高林志, 丁孝忠, 等. 塔里木盆地西南缘南华纪冰碛岩特征与地层对比. 中国地质, 2010, 4: 1183-1190
[29]  38 Roser B P, Korsch R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ration. J Geol, 1986, 94: 635-650
[30]  39 Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299: 715-717
[31]  40 McLennan S M. Meathering and global denudation. J Geol, 1993, 101: 295-303
[32]  41 Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles. J Geol, 1989, 97: 129-147
[33]  42 Young G M, Nesbitt H W. Paleoclimatology and provenance of the glaciogenic gowganda formation(Paleoproterozoic), Ontario, Canada: A chemostratigraphic approach. Geol Soc Am Bull, 1999, 111: 264
[34]  43 Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements(including REE)during Paleoproterozoic pedogenesis anddiagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim Cosmochim, 2000, 64: 2199-2220
[35]  44 Cullers R L, Podkovyrov V M. Geochemistry for the mesoperoterozoic lakhanda shales in southeastern Yakutia, Russia: Implicationsfor mineralogical and provenance control and recycling. Precambrian Res, 2000, 104: 77-93
[36]  45 Cullers R L. The source and origin of terrigenous sedimentary rocks in the mesoproterozoic Ui group, southeastern Russia. Precambrian Res, 2002, 117: 157-18
[37]  46 Wintsch R P, Kvale C M. Differential mobility of elements in burial diagenesis of siliciclastic rocks. J Sediment Res, 1994, 64: 349-36
[38]  47 Fedo C M, Young G M, Nesbitt H W, et al. Potassic and sodic metasomatism in the southern province of the Canadian shield: Evidence from the Paleoproterozoic serpent formation, huronian supergroup, Canada. Precambrian Res, 1997, 84: 17-36
[39]  48 Fedo C M, Young G M, Nesbitt H W. Paleoclimaticcontrol on the composition of the paleoproterozoic serpent formation, huronian supergroup, Canada: A greenhouse to icehouse transition. Precambrian Res, 1997b, 86: 201-223
[40]  49 Zhang C L, Li X H, Li Z X, et al. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications. Precambrian Res, 2007, 152: 149-169
[41]  50 冯连君, 储雪蕾, 张启锐, 等. 湘西北南华系渫水河组寒冷气候成因的新证据. 科学通报, 2004, 49: 1172-1178
[42]  51 Wani H, Mondal M E A. Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozoic sedimentary rocks of the Bastar craton, Indian peninsula: Implications on paleoweathering and Proterozoic crustal evolution. J Asian Earth Sci, 2010, 38: 220-232
[43]  52 张传林, 王中刚, 沈加林, 等. 西昆仑山阿卡孜岩体锆石SHRIMP定年及地球化学特征. 岩石学报, 2003, 19: 523-529
[44]  53 张传林, 杨淳, 沈家林, 等. 西昆仑北缘新元古代片麻状花岗岩锆石SHRMP年龄及其意义. 地质论评, 49: 239-244
[45]  54 张传林, 陆松年, 于海峰, 等. 青藏高原北缘西昆仑造山带构造演化: 来自锆石SHRIMP及LA-ICP-MS测年的证据. 中国科学: D辑: 地球科学, 2007, 37: 145-154
[46]  55 彭昌文, 高振家. 西昆仑山北坡铁克里克一带晚前寒武纪的微古植物群和叠层石及其地层意义. 新疆地质, 1984, 2: 17-28
[47]  56 高振家, 朱诚顺, 等. 新疆前寒武纪地质. 新疆: 新疆人民出版社, 1984. 47-54
[48]  57 李永安, 高振家, 王景河. 古塔里木地块晚前寒武纪古地磁特征的初步探讨. 新疆地质, 1984, 2: 81-93
[49]  58 曹仁关. 新疆南雅尔当山埃迪卡拉系的新观察. 地质通报, 1991, 1: 30-34
[50]  59 Zhang S H, Jiang G Q, Han Y G. The age of the Nantuo formation and Nantuo glaciation in south China. Terra Nova, 2008, 20: 1-6
[51]  60 王宇, 何金有, 卫魏, 等. 新疆阿克苏地区新元古代晚期地层沉积相及层序地层研究. 岩石学报, 2010, 26: 2519-2528
[52]  61 何金有, 徐备, 孟祥英, 等. 新疆库鲁克塔格地区新元古代层序地层学研究及对比. 岩石学报, 2007, 23: 1645-1654
[53]  62 王剑, 刘宝珺, 潘桂棠. 华南新元古代裂谷盆地演化——Rodinia超大陆解体的前奏. 矿物岩石, 2001, 21: 135-145
[54]  44 Cullers R L, Podkovyrov V M. Geochemistry for the mesoperoterozoic lakhanda shales in southeastern Yakutia, Russia: Implicationsfor mineralogical and provenance control and recycling. Precambrian Res, 2000, 104: 77-93
[55]  45 Cullers R L. The source and origin of terrigenous sedimentary rocks in the mesoproterozoic Ui group, southeastern Russia. Precambrian Res, 2002, 117: 157-18
[56]  46 Wintsch R P, Kvale C M. Differential mobility of elements in burial diagenesis of siliciclastic rocks. J Sediment Res, 1994, 64: 349-36
[57]  47 Fedo C M, Young G M, Nesbitt H W, et al. Potassic and sodic metasomatism in the southern province of the Canadian shield: Evidence from the Paleoproterozoic serpent formation, huronian supergroup, Canada. Precambrian Res, 1997, 84: 17-36
[58]  48 Fedo C M, Young G M, Nesbitt H W. Paleoclimaticcontrol on the composition of the paleoproterozoic serpent formation, huronian supergroup, Canada: A greenhouse to icehouse transition. Precambrian Res, 1997b, 86: 201-223
[59]  49 Zhang C L, Li X H, Li Z X, et al. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in quruqtagh of northeastern Tarim Block, western China: Geochronology, geochemistry and tectonic implications. Precambrian Res, 2007, 152: 149-169
[60]  50 冯连君, 储雪蕾, 张启锐, 等. 湘西北南华系渫水河组寒冷气候成因的新证据. 科学通报, 2004, 49: 1172-1178
[61]  51 Wani H, Mondal M E A. Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozoic sedimentary rocks of the Bastar craton, Indian peninsula: Implications on paleoweathering and Proterozoic crustal evolution. J Asian Earth Sci, 2010, 38: 220-232
[62]  52 张传林, 王中刚, 沈加林, 等. 西昆仑山阿卡孜岩体锆石SHRIMP定年及地球化学特征. 岩石学报, 2003, 19: 523-529
[63]  1 徐备. Rodinia超大陆构造演化研究的新进展和主要目标. 地质科技情报, 2001, 20: 15-19
[64]  2 张启锐, 储雪蕾, 张同钢, 等. 从“全球冰川”到“雪球假说”——关于新元古代冰川事件的最新研究. 高校地质学报, 2002, 8: 473-481
[65]  6 Zheng Y F, Gong B, Zhao Z F, et al. Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during supercontinental rifting in south China: Implications for the snowball Earth event. Am J Sci, 2008, 308: 484-516
[66]  7 Hoffman P F, Kaufman A J, Halverson G P, et al. Comings and gongings of global galciation on a Neoproterozoic tropical platform in Namibia. GSA Today, 1998, 8: 1-9
[67]  8 Kaufman A L, Knoll A H, Narbonne G M. Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci, 1997, 95: 6600-6605
[68]  9 Fanning C M, Link P K. U-Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello formation, southeastern Idaho. Geology, 2004, 32: 881-884
[69]  10 Lund K, Aleinkoff J N, Evans K V, et al. SHIMP U-Pb geochronology of Neoproterozoic Windermere supergroup, central Idaho: Implications for rifting of western lauerntia and synchroneity of Sturtian glacial deposits. GSA Bull, 2003, 115: 349-372
[70]  11 Condon D, Zhu M, Bowring S, et al. U-Pb ages from the Neoproterozoic doushantuo formation, China. Science, 2005, 308: 95-98
[71]  12 Zhang S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the doushantuo formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33: 473-476
[72]  63 Ma G G, Li H Q, Zhang Z C. An investigation of the age limits of the Sinian system in south China. CAGS Bull Yichang Inst Geol Miner Resources, 1984, 8: 1-29ace elements(including REE)during Paleoproterozoic pedogenesis anddiagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim Cosmochim, 2000, 64: 2199-2220
[73]  53 张传林, 杨淳, 沈家林, 等. 西昆仑北缘新元古代片麻状花岗岩锆石SHRMP年龄及其意义. 地质论评, 49: 239-244
[74]  54 张传林, 陆松年, 于海峰, 等. 青藏高原北缘西昆仑造山带构造演化: 来自锆石SHRIMP及LA-ICP-MS测年的证据. 中国科学: D辑: 地球科学, 2007, 37: 145-154
[75]  55 彭昌文, 高振家. 西昆仑山北坡铁克里克一带晚前寒武纪的微古植物群和叠层石及其地层意义. 新疆地质, 1984, 2: 17-28
[76]  56 高振家, 朱诚顺, 等. 新疆前寒武纪地质. 新疆: 新疆人民出版社, 1984. 47-54
[77]  57 李永安, 高振家, 王景河. 古塔里木地块晚前寒武纪古地磁特征的初步探讨. 新疆地质, 1984, 2: 81-93
[78]  58 曹仁关. 新疆南雅尔当山埃迪卡拉系的新观察. 地质通报, 1991, 1: 30-34
[79]  59 Zhang S H, Jiang G Q, Han Y G. The age of the Nantuo formation and Nantuo glaciation in south China. Terra Nova, 2008, 20: 1-6
[80]  60 王宇, 何金有, 卫魏, 等. 新疆阿克苏地区新元古代晚期地层沉积相及层序地层研究. 岩石学报, 2010, 26: 2519-2528
[81]  61 何金有, 徐备, 孟祥英, 等. 新疆库鲁克塔格地区新元古代层序地层学研究及对比. 岩石学报, 2007, 23: 1645-1654
[82]  62 王剑, 刘宝珺, 潘桂棠. 华南新元古代裂谷盆地演化——Rodinia超大陆解体的前奏. 矿物岩石, 2001, 21: 135-145
[83]  63 Ma G G, Li H Q, Zhang Z C. An investigation of the age limits of the Sinian system in south China. CAGS Bull Yichang Inst Geol Miner Resources, 1984, 8: 1-29 ?

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133