全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2011年5月28日磁暴期间中国地区大尺度电离层行进式扰动的GPS台网监测

, PP. 513-522

Keywords: GPS,大尺度电离层行进式扰动,大气声重波,电离层电子浓度总含量

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用中国大陆构造环境监测网络及全球GPS服务系统提供的中国及其周边地区的246个GPS接收台站的TEC观测资料,观测研究了2011年5月28日一次中等强度磁暴期间中国地区出现的大尺度电离层行进式扰动(LSTID),并给出了中国地区的二维TEC扰动图像.结果表明:在磁暴恢复相期间,我们一共监测到两个LSTID事件,一个发生在午夜前的中国西南地区,另一个发生在午夜后的东北地区.TEC二维成像结果清晰地显示了两次LSTID在中国地区的连续传播过程,西南地区午夜前的LSTID由低纬向中纬沿北偏东的方向传播,其持续时间约为60min,水平传播距离约1200km,等相面的宽度最大约500km;东北地区午夜后的LSTID由中纬向低纬沿南偏西的方向传播,其持续时间约为70min,水平传播距离约1200km,等相面的宽度最大可达1400km.对TEC扰动进行互谱分析得到两次LSTID的传播参量,发现午夜前的LSTID的水平传播相速度和相对扰动振幅的平均衰减率都比午夜后的LSTID的要大,这可能是由午夜前西南地区较高的背景垂直TEC0及背景大气温度引起的.研究还表明,午夜后的LSTID是由北极区活动激发的大气声重波产生的,通过对高纬地区水平地磁分量H的分析,可以估计出其激发源应位于140°E以东,42°N以北的1400~2600km范围之内;而对于午夜前的LSTID,则可能是由赤道电集流引起的焦耳加热激发的大气声重波产生的.

References

[1]  1 Georges T M, Hooke W H. Wave-induced fluctuations in ionospheric electron content: A model indicating some observational biases. J Geophy Res, 1970, 75: 6295-6308, doi: 10.1029/JA075i031p06295
[2]  2 Hocke K, Schlegel K. A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982-1995. Ann Geophy, 1996, 14: 917-940
[3]  3 Hunsucker R D. Atmospheric gravity waves generated in the high-latitude ionosphere: A review. Rev Geophys, 1982, 20: 293-315, doi: 10.1029/RG020i002p00293
[4]  4 Shiokawa K, Otsuka Y, Ogawa T, et al. A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. J Geophy Res, 2002, 107: A61088, doi: 10.1029/2001JA000245
[5]  5 Tsugawa T, Saito A, Otsuka Y. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J Geophy Res, 2004, 109: A06302, doi: 10.1029/2003JA010302
[6]  6 Perevalova N P, Afraimovich E L, Voeykov S V, et al. Parameters of large-scale TEC disturbances during the strong magnetic storm on 29 October 2003. J Geophy Res, 2008, 113: A00A13, doi: 10.1029/2008JA013137
[7]  7 Borries C, Jakowski N, Wilken V. Storm induced large scale TIDs observed in GPS derived TEC. Ann Geophy, 2009, 27: 1605-1612
[8]  8 Hayashi H, Nishitani N, Ogawa T, et al. Large-scale traveling ionospheric disturbnaces observed by superDARN Hokkaido HF radar and GPS networks on 15 December 2006. J Geophy Res, 2010, 115: A06309, doi: 10.1029/2009JA014297
[9]  9 Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric TEC measurements. Radio Sci, 1998, 33: 565-582, doi: 10.1029/97RS02707
[10]  10 Ding F, Wan W X, Ning B Q, et al. Large-scale traveling ionospheric disturbances observed by GPS TEC during the magnetic storm of October 29-30, 2003. J Geophy Res, 2007, 112: A06309, doi: 10.1029/2006JA012013
[11]  11 Tsugawa T, Saito A, Otsuka Y, et al. Damping of large-scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm. J Geophy Res, 2003, 108: A31127, doi: 10.1029/2002JA009433
[12]  12 Nicolls M J, Kelley M C, Coster A J, et al. Imaging the structure of large-scale TID using ISR and TEC data. Geophys Res Lett, 2004, 31: L09812, doi: 10.1029/2004GL019797
[13]  13 Mannucci A J, Tsurutani B T, Iijima B A, et al. Dayside global ionospheric response to the major interplanetary events of October 29-23, 2003 “Halloween Storms”. Geophys Res Lett, 2005, 32: L12S02, doi: 10.1029/2004GL021467
[14]  14 Foster J C, Rideout W. Midlatitude TEC enhancements during the October 2003 superstorm. Geophys Res Lett, 2005, 32: L12S04, doi: 10.1029/2004GL021719
[15]  15 Basu S, Basu S, Groves K M, et al. Near-simultaneous plasma structuring in the midlatitude and equatorial ionosphere during magnetic superstorms. Geophys Res Lett, 32: L12S05, doi: 10.1029/2004GL021678
[16]  16 Wang M, Ding F, Wan W X, et al. Monitoring global traveling ionospheric distrubances using the worldwide GPS network during the October 2003 storms. Earth Planets Space, 2007, 59: 407-419
[17]  17 Kamide Y, Yokoyama N, Gonzalez W, et al. Two-step development of geomagnetic storms. Geophy Res Lett, 1998, 103: 6917-6921
[18]  18 Ogawa T, Balan N, Otsuka Y, et al. Observations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan. Earth Planets Space, 2002, 54: 45-56
[19]  19 Shiokawa K, Ihara C, Otsuka Y, et al. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J Geophy Res, 2003, 108: 1052, doi: 10.1029/2002JA009491
[20]  20 Shiokawa K, Otsuka Y, Tsugawa T, et al. Geomagnetic conjugate observation of nighttime medium-scale and large-scale traveling ionospheric disturbances: FRONT3 campaign. J Geophy Res, 2005, 110: A05303, doi: 10.1029/2004JA010845
[21]  21 Otsuka Y, Shiokawa K, Ogawa T, et al. Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophy Res Lett, 2004: L15803, doi: 10.1029/2004GL020262
[22]  22 Lenovich L A, Afraimovich E L, Portnyagina O G, et al. Velocity and direction of the displacement of TEC large-scale traveling ionospheric disturbances during strong magnetic storms. Geomagn Aeronomy, 2004, 44: 149-155
[23]  23 Afraimovich E L, Berngardt O I, Shpynev B G, et al. Detection of traveling ionospheric disturbances from the data of simultaneous measurements of the electron concentration, total electron content, and Doppler frequency shift at the ISTP radiophysical complex. Geomagn Aeronomy, 2004, 44: 423-434
[24]  24 Oliver W L, Otsuka Y, Sato M, et al. A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J Geophy Res, 1997, 102: 14449-14512, doi: 10.1029/JA00491
[25]  25 Hall G E, Cecile J F, Macdougall J W, et al. Finding gravity wave source positions using the super dual auroral radar network. J Geophy Res, 1999, 104: 67-78
[26]  26 张东和, Igarashi K, 肖佐, 等. 大尺度电离层行扰的GPS观测. 地球物理学报, 2002, 45: 453-459
[27]  27 Mayr H G, Harris I, Herrero F A, et al. Thermospheric gravity waves: Observations and interpretation using the transfer function model (TFM). Space Sci Rev, 1990, 54: 297-375, doi: 10.1007/BF00177800
[28]  28 Hines C O. Internal atmospheric gravity waves at ionospheric height. Can J Phys, 1960, 38: 1441-1481
[29]  29 Liu C H, Yeh K C. Effect of ion drag on propagation of acoustic-gravity waves in the atmospheric F region. J Geophy Res, 1969, 74: 2248-2255, doi: 10.1029/JA074i009p02248
[30]  30 Hajkowicz L A. Auroral electrojet effect on the global occurrence pattern of large scale traveling ionospheric disturbances. Planet Space Sci, 1991, 39: 1189-1196
[31]  31 汤秋林, 万卫星, 宁百齐, 等. 中国中部地区大尺度电离层行扰的传播特性. 中国科学D辑: 地球科学, 2001, 31: 133-136
[32]  32 Chimonas G. The equatorial electrojet as a source of long period traveling ionospheric disturbances. Planet Space Sci, 1970, 18: 583-589

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133