全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

数值模拟华北克拉通岩石圈热对流侵蚀减薄机制

, PP. 642-652

Keywords: 华北克拉通,岩石圈,热对流,减薄机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

?关于华北克拉通岩石圈减薄机制,国内外学者通过各种研究定性地提出了不同的机制.文章根据最近几年国内外发表的有关资料,通过数值模拟方法,主要对华北克拉通岩石圈热对流侵蚀的减薄机制进行了计算.通过我们的计算证实了原来稳定存在的克拉通,如底边界为1673K时的初始情形,在底部温度扰动升高后,由于浮力驱动的小尺度地幔对流加剧能够使岩石圈发生大规模减薄,减薄速率在mm/a的量级,减薄的时间尺度基本都在十几个百万年;计算过程中我们讨论了初始参考等效粘滞系数分别为η0=1.0×1022Pas和η0=1.0×1023Pas的两种情形,在这两种条件下,我们分别计算了底边界温度为1773,1873,1973和2073K的4种情况.通过不同端员的计算我们知道岩石圈最多从200km减薄到100km,至少减薄到126.25km,这符合现今地球物理观测的结果.并且初始参考等效粘滞系数和底边界温度是影响减薄速率的重要因素.

References

[1]  1 Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 2005, 43: RG1001, doi: 10.1029/2004RG000156
[2]  2 Menzies M A, Fan W, Zhang M. Palaeozoic and Cenozoic lithoprobes and loss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. In: Prichard H M, Alabaster T, Harris N B W, eds. Magmatic Processes and Plate Tectonics. Geol Soc Spec Pub, 1993, 76: 71-81
[3]  3 Griffin W L, Zhang A, O''Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 1998, 27: 107-126
[4]  18 Buck W R. When does small-scale convection begin beneath oceanic lithosphere? Nature, 1985, 313: 775-777
[5]  19 Buck W R, Parmentier E M. Convection beneath young oceanic lithosphere: Implications for thermal structure and gravity. J Geophys Res, 1986, 91: 1961-1974
[6]  20 Davaille A, Jaupart C. Transient high-Rayleigh-number thermal convection with large viscosity variations. J Fluid Mech, 1993, 253: 141-166
[7]  21 Davaille A, Jaupart C. Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. J Geophys Res, 1994, 99: 19853-19866
[8]  22 Yuen D A, Fleitout L. Thinning of the lithosphere by small-scale convective destabilization. Nature, 1985, 313: 125-128
[9]  26 Korenaga J, Jordan T H. Physics of multi-scale convection in the Earth''s mantle 1. Onset of sublithospheric convection. J Geophys Res, 2003, 108: B7, 2333, doi: 10.1029/2002JB001760
[10]  27 Korenaga J, Jordan T H. On ‘steady state'' heat flow and the rheology of the oceanic mantle. Geophys Res Lett, 2002, 29: 2056, doi: 10.1029/2002GL016085
[11]  28 Huang J S, Zhong S, van Hunen J. Controls on sublithospheric small-scale convection. J Geophys Res, 2003, 108: 2405, doi: 10.1029/2003JB002456
[12]  29 van Hunen J, Huang J S, Zhong S. The effects of shearing on the onset and vigor of small-scale convection in Newtonian rheology. Geophy Res Lett, 2003, 30: 1991
[13]  30 Robinson E M, Parsons B, Daly S F. The effects of a shallow viscosity zone on the apparent compensation of mid-plate swell. Earth Planet Sci Lett, 1987, 82: 335-348
[14]  31 叶正仁, 王建. 上地幔变黏度小尺度对流的数值研究. 地球物理学报, 2003, 46: 335-339
[15]  32 傅容珊, 常筱华, 黄建华, 等. 区域重力异常与上地幔小尺度对流模型. 地球物理学报, 1994, 37(增刊): 249-258
[16]  38 Montagner J P. Upper mantle low anisotropy channels below the Pacific plate. Earth Planet Sci Lett, 2002, 202: 263-274
[17]  39 Ritzwoller M H, Shapiro N, Landuyt W. Two-stage cooling of the Pacific lithosphere, EOS Trans AGU. Spring Meet (Suppl), Abstract S41A-02, 2002, 83(19)
[18]  40 Christensen U. Convection with pressure-and temperature-dependent non-Newtonian rheology. Geophys J Int, 1984, 77: 343-384
[19]  41 Christensen U. Heat transfer by variable viscosity convection and implications for the Earth''s thermal evolution. Phys Earth Planet Int, 1984, 35: 264-282
[20]  42 Christensen U, Hager H. 3-D convection with variable viscosity. Geophys J Int, 1991, 104: 213-220
[21]  43 Tackley P J. Effect of strongly temperature-dependant viscosity on time-dependent 3-dimensional model of mantle convection. J Geophys Res, 1993, 20: 2187-2190
[22]  44 Zhong S, Zuber M T. Role of temperature-dependant viscosity and surface plates in spherical shell models of mantle convection. J Geophys Res, 2000, 105, B5: 11063-11082
[23]  45 Boussinesq J. Theorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la theorie mecanique de la lumiere. Gauthier-Villars Paris, 1903, 2: 157-176
[24]  46 Rayleigh L. On convective currents in a horizontal layer of fluid, when the higher temperature is on the underside. Philos Mag Ser, 1916, 2: 529-546
[25]  47 Ranalli, G. Rheology of the Earth. London: Chapman and Hall, 1995. 413
[26]  48 Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys Earth Planet Int, 2003, 140: 295-320
[27]  49 Gerya T V, Maresch W V, Willner A P, et al. Inherent gravitational instability of thickened continental crust with regionally developed low-timedium-pressure granulite facies metamorphism. Earth Planet Sci Lett, 2001, 190: 221-235
[28]  50 Gerya T V, Perchuk L L, Maresch W V, et al. Thermal regime and gravitational instability of multi-layered continental crust: Implications for the buoyant exhumation of high-grade metamorphic rocks. Eur J Miner, 2002, 14: 687-699
[29]  51 Blankenbach B, Busse F, Christensen U, et al. A benchmark comparison for mantle convection codes. Geophys J Int, 1989, 98: 23-38
[30]  52 McKenzie D, Roberts J M, Weiss N O. Convection in the earth''s mantle: Towards a numerical simulation, J Fluid Mech, 1974, 6: 465-538
[31]  53 徐义刚, 李洪颜, 庞崇进, 等. 论华北克拉通破坏的时限. 科学通报, 2009, 54: 1974-1989
[32]  54 Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotecton Metall, 1992, 16: 171-180
[33]  55 Chen L, Zheng T Y, Xu W W. A thinned lithospheric image of the Tanlu fault zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 2006, 111, doi: 10.1029/2005JBoo3974
[34]  56 Chen L, Tao W, Zhao L. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton. Earth Planet Sci Lett, 2008, 267: 56-68
[35]  57 McKenzie D, Bowin C. The relationship between bathymetry and gravity in the Atlantic Ocean. J Geophys Res, 1976, 81: 1903-1915
[36]  58 McKenzie D, Weiss N. Speculations on the thermal and tectonic history of the earth. Geophys J Roy Astron Soc, 1975, 42: 131-174
[37]  59 路凤香, 郑建平. 中国东部显生宙地幔演化的主要样式: “蘑菇云”模型. 地学前缘, 2000, 7: 97-108
[38]  60 袁学诚. 秦岭岩石圈速度结构与蘑菇云构造模型. 中国科学D辑: 地球科学, 1996, 26: 209-215
[39]  61 朱光, 王勇生, 牛漫兰. 郯庐断裂带的同造山运动. 地学前缘. 2004, 11: 169-182
[40]  62 李曙光. 大别山超高压变质岩折返机制与华北-华南陆块碰撞过程. 2004, 11: 63-70
[41]  63 朱日祥, 郑天愉. 华北克拉通破坏机制与古元古代板块构造体系. 科学通报, 2009, 54: 1950-1961
[42]  64 刘贻灿, 刘理湘, 李曙光, 等. 大别山北淮阳带西段新元古代浅变质花岗岩的发现及其大地构造意义. 科学通报, 2010, 55: 2391- 2399
[43]  65 McKenzie D, Jackson J, Priestley K. Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett, 2005, 233: 337-349
[44]  4 Foley S F. Rejuvenation and erosion of the cratonic lithosphere. Nature Geosci, 2008, 1: 503-510
[45]  5 吴福元, 徐义刚, 高山, 等. 华北岩石圈减薄与克拉通破坏研究的主要学术争论. 岩石学报, 2008, 24: 1145-1174
[46]  6 郑永飞, 吴福元. 克拉通岩石圈的生长和再造. 科学通报, 2009, 54: 1945-1949
[47]  7 Gao S, Rudnick R, Yuan H, et al. Recycling lower continental crust in the North China Craton. Nature, 2004, 432: 892-897
[48]  8 Gao S, Rudnick R, Xu W, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 2008, 270: 41-53
[49]  9 Zheng J, O''Reilly S, Griffin W, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean Craton, eastern China. Int Geol Rev, 1998, 40: 471-499
[50]  10 Zheng J, Griffin W, O''Reilly S, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 2007, 71: 5203-5225
[51]  11 Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean craton in China: Evidence, timing and mechanism. Phys Chem Earth, 2001, 26: 747-757
[52]  12 Xu Y, Huang X, Ma J, et al. Crust-mantle interaction during the tectonic-thermal reactivation of the North China craton: Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol, 2004, 147: 750-767
[53]  13 Zhang H. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 2005, 237: 768-780
[54]  14 Menzies M, Xu Y, Zhang H, et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, 96: 1-21
[55]  15 Schmeling H, Margant G. Mantle flow and evolution of the lithosphere. Phys Earth Planet Int, 1993, 79: 241-267
[56]  16 Schmeling H, Margant G. The influence of second-scale convection on the thickness of continental lithosphere and crust. Tectonophysics, 1991, 189: 281-306
[57]  17 Richter F H, Person B. On the interaction of two scales of convection in the mantle. J Geophys Res, 1975, 80: 2529-2541
[58]  23 Ogawa M, Schubert G, Zebib A. Numerical simulations of threedimensional thermal convection in a fluid with strongly temperature-dependent viscosity. J Fluid Mech, 1991, 233: 299-328
[59]  24 Dumoulin C, Doin M P, Fleitout L. Numerical simulations of the cooling of an oceanic lithosphere above a convective mantle. Phys Earth Planet Int, 2001, 125: 45-64
[60]  25 Marquart G. On the geometry of mantle flow beneath drifting lithospheric plates. Geophys J Int, 2001, 144: 356-372
[61]  33 傅容珊, 董树谦, 黄建华, 等. 利用地震层析成象数据反演地幔对流模型的研究. 地球物理学报, 2002, 45(增刊): 136-143
[62]  34 傅容珊, 黄建华, 董树谦, 等. 利用地震层析成象数据计算地幔对流新模型的探讨. 地球物理学报, 2003, 46: 772-778
[63]  35 Karato S I, Wu P. Rheology of the upper mantle: A synthesis. Science, 1993, 260: 771-778
[64]  36 Katzman R, Zhao L, Jordan T H. High-resolution, two-dimensional vertical tomography of the central Pacific mantle using ScS reverberations and frequency-dependent travel times. J Geophys Res, 1998, 103: 17933-17971
[65]  37 Chen L, Zha L, Jordan T H. Full three-dimensional seismic structure of the mantle beneath southwestern Pacific Ocean. EOS Trans AGU, Fall Meet Suppl, Abstract S52F-0699, 2001. 82(47)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133