1 Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 2005, 43: RG1001, doi: 10.1029/2004RG000156
[2]
2 Menzies M A, Fan W, Zhang M. Palaeozoic and Cenozoic lithoprobes and loss of >120 km of Archaean lithosphere, Sino-Korean Craton, China. In: Prichard H M, Alabaster T, Harris N B W, eds. Magmatic Processes and Plate Tectonics. Geol Soc Spec Pub, 1993, 76: 71-81
[3]
3 Griffin W L, Zhang A, O''Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 1998, 27: 107-126
[4]
18 Buck W R. When does small-scale convection begin beneath oceanic lithosphere? Nature, 1985, 313: 775-777
[5]
19 Buck W R, Parmentier E M. Convection beneath young oceanic lithosphere: Implications for thermal structure and gravity. J Geophys Res, 1986, 91: 1961-1974
[6]
20 Davaille A, Jaupart C. Transient high-Rayleigh-number thermal convection with large viscosity variations. J Fluid Mech, 1993, 253: 141-166
[7]
21 Davaille A, Jaupart C. Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. J Geophys Res, 1994, 99: 19853-19866
[8]
22 Yuen D A, Fleitout L. Thinning of the lithosphere by small-scale convective destabilization. Nature, 1985, 313: 125-128
[9]
26 Korenaga J, Jordan T H. Physics of multi-scale convection in the Earth''s mantle 1. Onset of sublithospheric convection. J Geophys Res, 2003, 108: B7, 2333, doi: 10.1029/2002JB001760
[10]
27 Korenaga J, Jordan T H. On ‘steady state'' heat flow and the rheology of the oceanic mantle. Geophys Res Lett, 2002, 29: 2056, doi: 10.1029/2002GL016085
[11]
28 Huang J S, Zhong S, van Hunen J. Controls on sublithospheric small-scale convection. J Geophys Res, 2003, 108: 2405, doi: 10.1029/2003JB002456
[12]
29 van Hunen J, Huang J S, Zhong S. The effects of shearing on the onset and vigor of small-scale convection in Newtonian rheology. Geophy Res Lett, 2003, 30: 1991
[13]
30 Robinson E M, Parsons B, Daly S F. The effects of a shallow viscosity zone on the apparent compensation of mid-plate swell. Earth Planet Sci Lett, 1987, 82: 335-348
38 Montagner J P. Upper mantle low anisotropy channels below the Pacific plate. Earth Planet Sci Lett, 2002, 202: 263-274
[17]
39 Ritzwoller M H, Shapiro N, Landuyt W. Two-stage cooling of the Pacific lithosphere, EOS Trans AGU. Spring Meet (Suppl), Abstract S41A-02, 2002, 83(19)
[18]
40 Christensen U. Convection with pressure-and temperature-dependent non-Newtonian rheology. Geophys J Int, 1984, 77: 343-384
[19]
41 Christensen U. Heat transfer by variable viscosity convection and implications for the Earth''s thermal evolution. Phys Earth Planet Int, 1984, 35: 264-282
[20]
42 Christensen U, Hager H. 3-D convection with variable viscosity. Geophys J Int, 1991, 104: 213-220
[21]
43 Tackley P J. Effect of strongly temperature-dependant viscosity on time-dependent 3-dimensional model of mantle convection. J Geophys Res, 1993, 20: 2187-2190
[22]
44 Zhong S, Zuber M T. Role of temperature-dependant viscosity and surface plates in spherical shell models of mantle convection. J Geophys Res, 2000, 105, B5: 11063-11082
[23]
45 Boussinesq J. Theorie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la theorie mecanique de la lumiere. Gauthier-Villars Paris, 1903, 2: 157-176
[24]
46 Rayleigh L. On convective currents in a horizontal layer of fluid, when the higher temperature is on the underside. Philos Mag Ser, 1916, 2: 529-546
[25]
47 Ranalli, G. Rheology of the Earth. London: Chapman and Hall, 1995. 413
[26]
48 Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys Earth Planet Int, 2003, 140: 295-320
[27]
49 Gerya T V, Maresch W V, Willner A P, et al. Inherent gravitational instability of thickened continental crust with regionally developed low-timedium-pressure granulite facies metamorphism. Earth Planet Sci Lett, 2001, 190: 221-235
[28]
50 Gerya T V, Perchuk L L, Maresch W V, et al. Thermal regime and gravitational instability of multi-layered continental crust: Implications for the buoyant exhumation of high-grade metamorphic rocks. Eur J Miner, 2002, 14: 687-699
[29]
51 Blankenbach B, Busse F, Christensen U, et al. A benchmark comparison for mantle convection codes. Geophys J Int, 1989, 98: 23-38
[30]
52 McKenzie D, Roberts J M, Weiss N O. Convection in the earth''s mantle: Towards a numerical simulation, J Fluid Mech, 1974, 6: 465-538
54 Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotecton Metall, 1992, 16: 171-180
[33]
55 Chen L, Zheng T Y, Xu W W. A thinned lithospheric image of the Tanlu fault zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 2006, 111, doi: 10.1029/2005JBoo3974
[34]
56 Chen L, Tao W, Zhao L. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton. Earth Planet Sci Lett, 2008, 267: 56-68
[35]
57 McKenzie D, Bowin C. The relationship between bathymetry and gravity in the Atlantic Ocean. J Geophys Res, 1976, 81: 1903-1915
[36]
58 McKenzie D, Weiss N. Speculations on the thermal and tectonic history of the earth. Geophys J Roy Astron Soc, 1975, 42: 131-174
7 Gao S, Rudnick R, Yuan H, et al. Recycling lower continental crust in the North China Craton. Nature, 2004, 432: 892-897
[48]
8 Gao S, Rudnick R, Xu W, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 2008, 270: 41-53
[49]
9 Zheng J, O''Reilly S, Griffin W, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean Craton, eastern China. Int Geol Rev, 1998, 40: 471-499
[50]
10 Zheng J, Griffin W, O''Reilly S, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 2007, 71: 5203-5225
[51]
11 Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean craton in China: Evidence, timing and mechanism. Phys Chem Earth, 2001, 26: 747-757
[52]
12 Xu Y, Huang X, Ma J, et al. Crust-mantle interaction during the tectonic-thermal reactivation of the North China craton: Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol, 2004, 147: 750-767
[53]
13 Zhang H. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 2005, 237: 768-780
[54]
14 Menzies M, Xu Y, Zhang H, et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, 96: 1-21
[55]
15 Schmeling H, Margant G. Mantle flow and evolution of the lithosphere. Phys Earth Planet Int, 1993, 79: 241-267
[56]
16 Schmeling H, Margant G. The influence of second-scale convection on the thickness of continental lithosphere and crust. Tectonophysics, 1991, 189: 281-306
[57]
17 Richter F H, Person B. On the interaction of two scales of convection in the mantle. J Geophys Res, 1975, 80: 2529-2541
[58]
23 Ogawa M, Schubert G, Zebib A. Numerical simulations of threedimensional thermal convection in a fluid with strongly temperature-dependent viscosity. J Fluid Mech, 1991, 233: 299-328
[59]
24 Dumoulin C, Doin M P, Fleitout L. Numerical simulations of the cooling of an oceanic lithosphere above a convective mantle. Phys Earth Planet Int, 2001, 125: 45-64
[60]
25 Marquart G. On the geometry of mantle flow beneath drifting lithospheric plates. Geophys J Int, 2001, 144: 356-372
35 Karato S I, Wu P. Rheology of the upper mantle: A synthesis. Science, 1993, 260: 771-778
[64]
36 Katzman R, Zhao L, Jordan T H. High-resolution, two-dimensional vertical tomography of the central Pacific mantle using ScS reverberations and frequency-dependent travel times. J Geophys Res, 1998, 103: 17933-17971
[65]
37 Chen L, Zha L, Jordan T H. Full three-dimensional seismic structure of the mantle beneath southwestern Pacific Ocean. EOS Trans AGU, Fall Meet Suppl, Abstract S52F-0699, 2001. 82(47)