全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

东南极DT401冰芯中NO3-离子沉积记录及影响因素

, PP. 618-627

Keywords: 硝酸根,氧同位素,积累率,火山记录,太阳活动

Full-Text   Cite this paper   Add to My Lib

Abstract:

?1999年中国南极科学考察队在中山站-DomeA考察沿线DT401点钻取到一支长102.65m的浅冰芯,为我们研究东南极内陆地区NO3-离子沉积特征及影响机制提供了契机.对冰芯中δ18O(年平均气温替代指标)、积累率、火山沉积记录及地球以外各种影响因素(太阳活动、超新星爆发和流星雨等)与冰芯中NO3-离子沉积关系的研究结果显示,积累率对冰芯NO3-离子沉积通量的影响较之沉积浓度更为显著.与积累率相比,气温(δ18O)与NO3-沉积记录的相关性较差.火山喷发物质的沉降可以显著的影响雪层中NO3-离子的沉积,表现为nss-SO42-离子的峰值对应NO3-的谷值.太阳活动对该地区NO3-离子的影响在冰芯中也有所记录,NO3-离子的浓度波动表现出3个显著的周期(16.6,24.0和102.0年),均较好的对应了太阳活动的相关周期.历史上过去1150年间与太阳活动有关的6次气候事件(Dalton极小期、Maunder极小期、Sporer极小期、Wolf极小期、Oort极小期和Medieval极大期)均与同时期DT401冰芯中NO3-离子的波动趋势相吻合,前五次事件表现为NO3-离子的低值期,最后一次事件表现为高值.

References

[1]  1 Callis L B, Natarajan M. The Antarctic ozone minimum: Relationship to odd nitrogen, odd chlorine, the final warming and the 11-year solar cycle. J Geophys Res, 1986, 91: 10771-10796
[2]  2 Legrand M R, Kirchner S. Origins and variations of nitrite in South Polar precipitation. J Geophys Res, 1990, 95(D4): 3493-3507
[3]  3 R?thlisberger R, Hutterli M A, Sommer S, et al. Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core. J Geophys Res, 2000, 105: 20565-20572
[4]  4 R?thlisberger R, Hutterli M A, Wolff E W, et al. Nitrate in Greenland and Antarctic ice cores: A detailed description of post-depositional processes. Ann Glaciol, 2002, 35: 209-216
[5]  5 Qin D H, Zeller E J, Dreschhoff G A M. The distribution of nitrate content in the surface snow of the Antarctic ice sheet along the route of the 1990 International Trans-Antarctica Expedition. J Geophys Res, 1992, 97, A5: 6277-6284
[6]  6 Yang Q, Mayewski P A, Linder E, et al. Chemical species spatial distribution and relationship to elevation and snow accumulation rate over the Greenland ice sheet. J Geophys Res, 1996, 101, D13: 18629-18637
[7]  7 Castellano E, Becagli S, Hutterli M, et al. Holocene volcanic history as recorded in the sulfate stratigraphy of the European project for ice coring in Antarctica Dome C (EDC96) ice core. J Geophys Res, 2005,110, D06114, doi: 10.1029/2004JD005259
[8]  8 Neftel A, Beer J, Oeschger H, et al. Sulfate and nitrate concentrations in snow from south Greenland 1895-1978. Nature, 1985, 314: 611-613
[9]  9 Mayewski P A, Lyons W B, Spencer M J, et al. Sulfate and nitrate concentrations from a south Greenland ice core. Science, 1986, 232: 975-977
[10]  10 Legrand M, Delmas R J. Relative contributions of tropospheric and stratospheric sources to nitrate in Antarctic snow. Tellus B, 1986, 38: 236-249
[11]  11 Legrand M, Leopold A, Domine F. Acidic gases (HCl, HF, HNO3, HCOOH, and CH3COOH): A review of ice core data and some preliminary discussions on their air-snow relationships. In: Wolff E, Bales R, eds. Chemical Exchange Between the Atmosphere and Polar Snow. New York: Springer-Verlag, 1996. NATO ASI Ser. I, Vol 43, 19-43
[12]  12 Dreschhoff G A M, Zeller E J, Parker B C. Past solar activity variation reflected in nitrate concentrations in Antarctic ice. In: Mc Cormac B M, ed. Weather and Climate Response to Solar variations, Colorado Associated University Press, Boulder, 1983. 225-236
[13]  13 Laird C M, Zeller E J, Armstrong T P, et al. Solar activity and nitrate deposition in the South Polar snow. Geophys Res Lett, 1982, 9: 1195-1198
[14]  14 Laird C M. Solar particle flux and nitrate in South Pole snow. In: Mc Cormac B M, ed. Weather and Climate Response to Solar Variations. Colorado Associated University Press, Boulder, 1983. 237-242
[15]  15 Wolff E W. Nitrate in polar ice. In: Delmas R J, ed. Ice Core studies of Global Biogeochemical Cycles. Berlin: Springer-Verlag, 1995. 195-224
[16]  16 Zeller E J, Parker B C. Nitrate ion in Antarctic firn as a marker for solar activity. Geophys Res Lett, 1981, 8: 895-898
[17]  17 Ren J, Li C, Hou S, et al. A 2680 year volcanic record from the DT-401 East Antarctic ice core. J Geophys Res, 2010, 115: D11301, doi: 10.1029/2009JD012892
[18]  18 效存德, 李院生, 侯书贵, 等. 南极冰盖最高点满足钻取最古老冰芯的必要条件: Dome A 最新实测结果. 科学通报, 2007, 52: 2456-2460
[19]  19 Herron M M, Langway C C. Firn densification: An empirical model. J Glaciol, 1980, 25: 373-385
[20]  20 Cole-Dai Jihong, Thompson L G, Thompson E M. A 485 year record of atmospheric chloride, nitrate and sulfate: Results of chemical analysis of ice cores from Dyer Plateau, Antarctic Peninsula. Ann Glaciol, 1995, 21: 182-188
[21]  21 Neubauer J, Heumann K G. Determination of nitrate at the ng/g level in Antarctic snow samples with ion chromatography and isotope dilution mass spectrometry, Fres Z. Anal Chem, 1988, 331: 170-173
[22]  22 Neubauer J, Heumann K G. Nitrate trace determination in snow and firn core samples of ice shelves at the Weddell Sea, Antarctica. Atmos Environ, 1988, 22: 537-545
[23]  23 Silvente E, Legrand M. A preliminary study of the air-snow relationship for nitric acid in Greenland. In: Delmas R J, ed. Ice Core Studies of Global Biogeochemical Cycles. New York: Springer-Verlag, 1995. NATO ASI Ser 1, 30: 225-240
[24]  24 Mayewski P A, Legrand M R. Recent increase in nitrate concentration of Antarctic snow. Nature, 1990, 346: 258-260
[25]  25 Mulvaney R, Wagenbach D, Wolff E W. Postdepositional change in snowpack nitrate from observation of year-round near-surface snow in coastal Antarctica. J Geophys Res, 1998, 103: 11021-11031
[26]  26 Blunier T, Floch G L, Jacobi H W, et al. Isotopic view on nitrate loss in Antarctic surface snow. Geophys Res Lett, 2005, 32: L13501, doi: 10.1029/2005GL023011
[27]  27 EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429: 623-629
[28]  28 Li Y S, Cole-Dai J, Zhou L Y. Glaciochemical evidence in an East Antarctica ice core of a recent (AD 1450-1850) neoglacial episode. J Geophys Res, 2009, 114, D08117, doi: 10.1029/2008JD011091
[29]  29 Kreutz K J, Mayewski P A, Meeker L D, et al. Bipolar changes in atmospheric circulation during the Little Ice Age. Science, 1997, 277: 1294-1296
[30]  30 Morgan V, Van Ommen T D. Seasonality in late-Holocene climate from ice-core records. Holocene, 1997, 7: 351-354
[31]  31 侯书贵, 李院生, 效存德, 等. 南极Dome A地区109.91 m冰芯气泡封闭深度及稳定同位素记录的初步结果. 中国科学D辑: 地球科学, 2008, 38: 1376-1383
[32]  32 王叶堂. 南极冰盖降水中稳定同位素与表面气温的空间分布特征研究. 北京: 中国科学院研究生院博士论文, 2009
[33]  33 Abbatt J P D. Interaction of HNO3 with water-ice surfaces at temperatures of the free-troposphere. Geophys Res Let, 1997, 24: 1479-1482
[34]  34 Thibert E, Domine F. Thermodynamics and kinetics of the solid solution of HNO3 in ice. J Phys Chem, Ser B, 1998, 102: 4432-4439
[35]  35 Clausen H B, Hammer C U, Hvidberg C S, et al. A comparison of the volcanic records over the past 4000 years from the Greenland Ice Core Project and Dye 3 Greenland ice cores. J Geophys Res, 1997, 102: 26707-26723
[36]  36 Green D A, Stephenson F R. On the footprints of supernovae in Antarctic ice cores. Astroparticles Phys, 2004, 20: 613-615
[37]  37 Motizuki Y, Takahashi K, Makishima K, et al. An Antarctic ice core recording both supernovae and solar cycles. Nature, 2009, arXiv: 0902.3446
[38]  38 王宁练, 姚檀栋, Thompson L G. 青藏高原古里雅冰芯中NO3-浓度与太阳活动. 科学通报, 1998, 43: 309-312
[39]  39 Bonev B P, Penev KM, Sello S. Long-term solar variability and the solar cycle in the 21st century. Astrophys J, 2004, 605: 81-84
[40]  40 Usoskin I G, Solanki S K, Schussler M, et al. Millennium-scale sunspot number reconstruction: Evidence for an unusually active Sun since the 1940s. Phys Rev Lett, 2003, 91: 211101-1-4, doi: 10.1103
[41]  41 Park C. Nitric oxide production by Tunguska meteor. Aca Astronaut, 1978, 5: 523-542
[42]  42 Rasmussen K L, Clausen H, Risbo T. Nitrate in Greenland ice sheet in the years following the 1908 Tunguska event. Icarus, 1984, 78: 101-108

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133