全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

亚洲季风区深对流系统的区域分布和日变化特征

, PP. 556-569

Keywords: 深对流系统,亚洲季风区,TRMM卫星,区域分布,日变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用TRMM卫星12年的观测资料,分析了亚洲季风区20dBZ回波顶高大于14km的深对流系统的分布特征,结合NCEP再分析资料对深对流系统的空间分布特征成因进行了探讨,并对不同地形条件下的深对流系统进行了对比研究.结果表明,深对流系统主要发生在陆地上,夏季风爆发前,深对流系统主要分布在20°N以南;季风爆发后,深对流系统的分布向中纬度地区发展并以青藏高原南麓地区最活跃.青藏高原上的深对流系统的发生频数较中国中东部高,但水平尺度小,对流强度较弱,而中国中东部地区的深对流系统虽然发生频数较低但对流强,且闪电频数大.洋面上的深对流系统表现为最小红外亮温小(对应云顶高),40dBZ回波最大面积比陆地上大但出现高度较低,闪电频数少.陆地上的深对流系统主要集中发生在午后至午夜,青藏高原上的深对流更加集中的发生在午后至傍晚,海洋上发生在凌晨至日出前的深对流系统较其他时段多,但日变化幅度不大,热带海洋性大陆深对流的日变化与大陆上类似.

References

[1]  1 Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange. Rev Geophys, 1995, 33: 403-439
[2]  2 Sherwood S C, Dessler A E. On the control of stratospheric humidity. Geophys Res Lett, 2000, 27: 2513-2516
[3]  3 陈洪滨, 卞建春, 吕达仁. 上对流层-下平流层交换过程研究的进展与展望. 大气科学. 2006, 30: 813-820
[4]  4 Gettelman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere. J Geophys Res, 2004, 109: D22101, doi: 10. 1029/2004JD004878
[5]  5 徐祥德, 周明煜, 陈家宜, 等. 青藏高原地气过程动力、热力结构综合物理图像. 中国科学D辑: 地球科学, 2001, 31: 428-440
[6]  6 Gettelman A, Salby M L, Sassi F. Distribution and influence of convection in the tropical tropopause region. J Geophys Res, 2002, 107: D10, doi: 10. 1029/2001JD001048
[7]  7 陈斌, 徐祥德, 卞建春, 等. 夏季亚洲季风区对流层向平流层输送的源区、路径及其时间尺度的模拟研究. 大气科学, 2010, 34: 495-505
[8]  8 Barros A P, Kim G, Williams E, et al. Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat Hazards Earth Syst Sci, 2004, 4: 29-51
[9]  9 Liu C T, Zipser E J. Global distribution of convection penetrating the tropical tropopause. J Geophys Res, 2005, 110: D23104, doi: 10.1029/2005JD006063
[10]  10 Zipser E J, Cecil D J, Liu C T, et al. Where are the most intense thunderstorms on earth? Bull Amer Meteor Soc, 2006, 87: 1057-1071
[11]  11 Houze R A, Wilton D C, Smull B F. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart J Roy Meteor Soc, 2007, 133: 1389-1411
[12]  12 Romatschke U, Medina S, Houze R A. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Climate, 2010, 23: 419-439
[13]  13 傅云飞, 宇如聪, 徐幼平, 等. TRMM测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究. 气象学报, 2003, 61: 421-431
[14]  14 傅云飞, 张爱民, 刘勇, 等. 基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析. 气象学报. 2008, 66: 730-746
[15]  15 袁铁, 郄秀书. 基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究. 大气科学, 2010, 34: 58-70
[16]  16 郑永光, 王颖, 寿绍文. 我国副热带地区夏季深对流活动气候分布特征. 北京大学学报(自然科学版), 2010, 46: 793-804
[17]  17 祁秀香, 郑永光. 2007年夏季我国深对流活动时空分布特征. 应用气象学报, 2009, 20: 286-294
[18]  18 Kummerow C, Barnes W, Kozu T, et al. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J Atmos Ocean Technol, 1998, 15: 809-817
[19]  19 Kummerow C, Simpson J, Thiele O, et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteor, 2000, 39: 1965-1982
[20]  20 Liu C T, Zipser E J, Cecil D J, et al. A cloud and precipitation feature database from nine years of TRMM observations. J Appl Meteor Clim, 2008, 47: 2712-2728
[21]  21 Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77: 437-470
[22]  22 Compo G P, Whitaker J S, Sardeshmukh P D. Feasibility of a 100 year reanalysis using only surface pressure data. Bull Amer Met Soc, 2006, 87: 175-190
[23]  23 Riemann-Campe K, Fraedrich K, Lunkeit F. Global climatology of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in ERA-40 reanalysis. Atmos Res, 2009, 93: 534-545
[24]  24 Michaud L. Comments on “Convective available potential energy in the environment of oceanic and continental clouds”. J Atmos Sci, 1996, 53: 1209-1211
[25]  25 Lucas C, Zipser E, LeMone M. Vertical velocity in oceanic convection off tropical Australia. J Atmos Sci, 1994, 51: 3183-3193
[26]  26 Blanchard D O. Assessing the vertical distribution of convective available potential energy. Wea Forecast, 1998, 13: 870-877
[27]  27 Weston K J. The dry-line of northern India and its role in cumulonimbus convection. Quart J RoyMeteor Soc, 1972, 98: 519-531
[28]  28 Yamane Y, Hayashi T. Evaluation of environmental conditions for the formation of severe local storms across the Indian subcontinent. Geophys Res Lett, 2006, 33: L17806, doi: 10.1029/2006GL026823
[29]  29 周晓霞, 丁一, 王盘兴. 夏季亚洲季风区的水汽输送及其对中国降水的影响. 气象学报, 2008, 66: 59-70
[30]  30 吴国雄, 毛江玉, 段安民, 等. 青藏高原影响亚洲夏季气候研究的最新进展. 气象学报, 2004, 62: 528-540
[31]  31 Luo Y, Zhang R, Qian W, et al. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J Clim, 2011, 24: 2164-2177
[32]  32 Fu Y F, Liu G S. Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J Appl Meteor Clim, 2007, 46: 667-672, doi: 10.1175/JAM2484.1
[33]  33 Qie X, Toumi R, Yuan T. Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J Geophys Res, 2003, 108: D17, 4551, doi: 10.1029/2002JD003304
[34]  34 Yuan T, Qie X S. Study on lightning activity and precipitation characteristics before and after the onset of the South China Sea summer monsoon. J Geophys Res, 2008, 113: D14101, doi: 10.1029/2007JD009382
[35]  35 Gauthier M L, Petersen W A, Carey L D, et al. Relationship between cloud-to-ground lightning and precipitation ice mass: A radar study over Houston. Geophy Res Lett, 2006, 33: L20803, doi: 10.1029/2006GL027244
[36]  36 郄秀书, 周筠珺, Ralf T. 青藏高原中部的闪电活动特征及其对对流最大不稳定能量的响应. 科学通报, 2003, 48: 87-90

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133