4 Gettelman A, Kinnison D E, Dunkerton T J, et al. Impact of monsoon circulations on the upper troposphere and lower stratosphere. J Geophys Res, 2004, 109: D22101, doi: 10. 1029/2004JD004878
6 Gettelman A, Salby M L, Sassi F. Distribution and influence of convection in the tropical tropopause region. J Geophys Res, 2002, 107: D10, doi: 10. 1029/2001JD001048
8 Barros A P, Kim G, Williams E, et al. Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat Hazards Earth Syst Sci, 2004, 4: 29-51
[9]
9 Liu C T, Zipser E J. Global distribution of convection penetrating the tropical tropopause. J Geophys Res, 2005, 110: D23104, doi: 10.1029/2005JD006063
[10]
10 Zipser E J, Cecil D J, Liu C T, et al. Where are the most intense thunderstorms on earth? Bull Amer Meteor Soc, 2006, 87: 1057-1071
[11]
11 Houze R A, Wilton D C, Smull B F. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart J Roy Meteor Soc, 2007, 133: 1389-1411
[12]
12 Romatschke U, Medina S, Houze R A. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Climate, 2010, 23: 419-439
19 Kummerow C, Simpson J, Thiele O, et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteor, 2000, 39: 1965-1982
[20]
20 Liu C T, Zipser E J, Cecil D J, et al. A cloud and precipitation feature database from nine years of TRMM observations. J Appl Meteor Clim, 2008, 47: 2712-2728
[21]
21 Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77: 437-470
[22]
22 Compo G P, Whitaker J S, Sardeshmukh P D. Feasibility of a 100 year reanalysis using only surface pressure data. Bull Amer Met Soc, 2006, 87: 175-190
[23]
23 Riemann-Campe K, Fraedrich K, Lunkeit F. Global climatology of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in ERA-40 reanalysis. Atmos Res, 2009, 93: 534-545
[24]
24 Michaud L. Comments on “Convective available potential energy in the environment of oceanic and continental clouds”. J Atmos Sci, 1996, 53: 1209-1211
[25]
25 Lucas C, Zipser E, LeMone M. Vertical velocity in oceanic convection off tropical Australia. J Atmos Sci, 1994, 51: 3183-3193
[26]
26 Blanchard D O. Assessing the vertical distribution of convective available potential energy. Wea Forecast, 1998, 13: 870-877
[27]
27 Weston K J. The dry-line of northern India and its role in cumulonimbus convection. Quart J RoyMeteor Soc, 1972, 98: 519-531
[28]
28 Yamane Y, Hayashi T. Evaluation of environmental conditions for the formation of severe local storms across the Indian subcontinent. Geophys Res Lett, 2006, 33: L17806, doi: 10.1029/2006GL026823
31 Luo Y, Zhang R, Qian W, et al. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J Clim, 2011, 24: 2164-2177
[32]
32 Fu Y F, Liu G S. Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J Appl Meteor Clim, 2007, 46: 667-672, doi: 10.1175/JAM2484.1
[33]
33 Qie X, Toumi R, Yuan T. Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor. J Geophys Res, 2003, 108: D17, 4551, doi: 10.1029/2002JD003304
[34]
34 Yuan T, Qie X S. Study on lightning activity and precipitation characteristics before and after the onset of the South China Sea summer monsoon. J Geophys Res, 2008, 113: D14101, doi: 10.1029/2007JD009382
[35]
35 Gauthier M L, Petersen W A, Carey L D, et al. Relationship between cloud-to-ground lightning and precipitation ice mass: A radar study over Houston. Geophy Res Lett, 2006, 33: L20803, doi: 10.1029/2006GL027244
[36]
36 郄秀书, 周筠珺, Ralf T. 青藏高原中部的闪电活动特征及其对对流最大不稳定能量的响应. 科学通报, 2003, 48: 87-90