全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北京亚微米气溶胶化学组分及粒径分布季节变化特征

, PP. 606-617

Keywords: 气溶胶,化学组分,粒径分布,气溶胶质谱仪,季节变化,北京

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文利用气溶胶质谱仪(Q-AMS)对北京2008年不同季节(1,4,6和10月)亚微米气溶胶(PM1)特性进行观测实验.获得了PM1及其主要化学组分硫酸盐、硝酸盐、铵盐、有机物的质量浓度和粒径分布数据,总结了亚微米气溶胶化学组分和粒径分布的季节变化特征.研究表明,亚微米气溶胶质量浓度夏季最高,秋季最低.有机物浓度在四季中占PM1的份额(36%~58%)高于其他物种,四季中有机物在冬季浓度最高.硫酸盐、硝酸盐和铵盐平均浓度次之,三种物种在夏季浓度最高,其次为春季,秋冬季最低.利用主因子分析手段将有机气溶胶解析为碳氢类有机气溶胶(HOA)和氧化性有机气溶胶(OOA)两类.HOA浓度在冬季最高,占有机气溶胶总量的70%左右.OOA浓度在夏季最高,秋冬季较低.在四个不同季节主要化学组分质量浓度的日变化规律表现为夜间高,日间低的特点.HOA傍晚到夜间浓度变化幅度明显大于其他物种,其浓度在中午出现浓度峰值,可能与北京餐馆排放有直接关系.OOA以及硫酸盐、硝酸盐、铵盐和氯化物的日变化特点接近,早上9:00~13:00之间浓度出现上升趋势,午后有所下降.亚微米气溶胶主要化学组分粒径分布峰值均出现在500~600nm之间.有机物质量谱分布范围较其他物种宽,尤其是秋、冬季质量谱分布更宽.硫酸盐、硝酸盐和铵盐在春、夏、秋三季的平均粒径分布特点相似,而冬季谱分布较其他季节要宽,峰值粒径偏小.在粒径小于200nm的范围内,有机物占亚微米气溶胶总量60%以上,粒子越细,有机物占的份额越大,冬季有机物在观测粒径范围内占PM1的50%以上.春、夏、秋三季HOA在<200nm粒径范围内占优势,而OOA则在>300nm粒径范围内占有相对优势.

References

[1]  25 Alfarra M R, Coe H, Allan J, et al. Characteristics of urban and rural organic particulate in the lower fraser valley using two aerodyne aerosol mass spectrometers. Atmos Environ, 2004, 38: 5745-5758
[2]  26 Lanz V A, Alfarra M R, Baltensperger U, et al. Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmos Chem Phys, 2007, 7: 1503-1522
[3]  27 Zhang Q, Canagaratna M R, Jayne J T, et al. Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. J Geophys Res, 2005, 110, doi: 10.1029/2004JD004649
[4]  28 Lanz V A, Prév?t A S H, Alfarra M R, et al. Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: An overview. Atmos Chem Phys, 2010, 10: 10453-10471
[5]  29 Weimer S, Drewnick F, Hogrefe O, et al. Size-selective nonrefractory ambient aerosol measurements during the Particulate Matter Technology Assessment and Characterization Study--New York 2004 Winter Intensive in New York City. J Geophys Res, 2006, 111(D18)
[6]  30 Volkamer R, Jimenez J L, San Martini F, et al. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys Res Lett, 2006, 33: L17811
[7]  31 Topping D, Coe H, McFiggans G, et al. Aerosol chemical characteristics from sampling conducted on the Island of Jeju, Korea during ACE-Asia. Atmos Environ, 2004, 38: 2111-2123
[8]  32 Takami A, Miyoshi T, Shimono A S H. Chemical composition of fine aerosol measured by AMS at Fukue Island, Japan during APEX period. Atmos Environ, 2005, 39: 4913-4924
[9]  33 王明星. 大气化学. 北京: 气象出版社, 1991
[10]  34 Huang X F, He L Y, Hu M, et al. Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an aerodyne high-resolution aerosol mass spectrometer. Atmos Chem Phys, 2011, 11: 1865-1877
[11]  35 Allan J D, Alfarra M R, Bower K N, et al. Quantitative sampling using an aerodyne aerosol mass spectrometer. Part 2: Measurements of fine particulate chemical composition in two UK cities. J Geophys Res, 2003, 108: 4091
[12]  36 Allan J D, Jose L J, Paul I W, et al. Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis. J Geophys Res, 2003, 108: 4090, doi: 4010.1029/2002JD002358
[13]  37 Arimoto R, Duce R A, Savoie D L. Relationships among aerosol constitutes from Asia and the North Pacific during PEM-west A. J Geophys Res, 1996, 101: 2011-2023
[14]  38 Yao X H, Chan C K, Fang M, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos Environ, 2002, 36: 4223-4234
[15]  39 Aneja V P, Wang B, Tong D Q, et al. Characterization of major chemical components of fine particulate matter in North Carolina. J Air Waste Manage Assoc, 2006, 56: 1099-1107
[16]  40 Kanakidou M, Seinfeld J H, Pandis S N, et al. Organic aerosol and global climate modelling: A review. Atmos Chem Phys, 2005, 5: 1053-1123
[17]  41 Zhang Q, Alfarra M R, Worsnop D R, et al. Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environ Sci Technol, 2005, 39: 4938-4952
[18]  42 Takegawa N, Miyazaki Y, Kondo Y, et al. Characterization of an aerodyne aerosol mass spectrometer (AMS): Intercomparison with other aerosol instruments. Aerosol Sci Technol, 2005, 39: 760-770
[19]  43 Zhang Q, Worsnop D R, Canagaratna M R, et al. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: Insights into sources and processes of organic aerosols. Atmos Chem Phys, 2005, 5: 3289-3311
[20]  1 Wilson R, Spengler J. Particles in Our Air: Concentrations and Health Effects. Boston: Harvard Univ Press, 1996
[21]  2 Dockery D W, Pope C A, Xu X P, et al. An association between air-pollution and mortality in 6 united states cities. New England J Med, 1993, 329: 1753-1759
[22]  3 Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: John Wiley, 1998
[23]  4 Jacobson M C, Hansson H C, Noone K J, et al. Organics atmospheric aerosols: Review and state of the science. Rev Geophys, 2000, 38: 267-294
[24]  5 Solomon S, Qin D, Manning M, et al. The Scientific Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007
[25]  6 Jimenez J L, Canagaratna M R, Sun J Y, et al. Evolution of organic aerosols in the atmosphere. Science, 2009, 326: 1525-1529
[26]  7 Zhang Q, Jimenez J L, Canagaratna M R, et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically- influenced Northern Hemisphere midlatitudes. Geophys Res Lett, 2007, 34: L13801, doi: 10.1029/2007GL029979
[27]  8 胡敏, 赵云良, 何凌燕, 等. 北京冬、夏季颗粒物及其离子成分质量浓度谱分布. 环境科学, 2005, 26: 1-6
[28]  9 胡敏, 何凌燕, 黄晓锋, 等. 北京大气细粒子和超细粒子理化特征、来源及形成机制. 北京: 科学出版社, 2009
[29]  10 赵普生, 张小玲, 孟伟, 等. 京津冀区域气溶胶中无机水溶性离子污染特征分析. 环境科学, 2011, 32: 1546-1549
[30]  11 Yao X H, Arthur P S, Fang M, et al. Size distribution and formation of ionic species in atmospheric particulate pollutants in Beijing, China:1-inorganics ions. Atmos Environ, 2003, 37: 2991-3000
[31]  12 Sun J Y, Zhang Q, Canagaratna M R, et al. Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an aerodyne aerosol mass spectrometer. Atmos Environ, 2010, 44: 131-140
[32]  13 Huang X F, He L Y, Hu M, et al. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an aerodyne high-resolution aerosol mass spectrometer. Atmos Chem Phys, 2010, 10: 8933-8945
[33]  14 Sun Y, Wang Z, Dong H, et al. Characterization of summer organic and inorganic aerosols in Beijing, China with an aerosol chemical speciation monitor. Atmos Environ, 2012, 51: 250-259
[34]  15 Zhang X Y, Wang Y Q, Lin W L, et al. Changes of atmospheric composition and optical properties over Beijing. Bull Amer Meteorol Soc, 2009, 90: 1633-1651
[35]  16 Zhang Y M, Zhang X Y, Sun J Y, et al. Characterization of new particle and secondary aerosol formations in summer time at Urban Beijing, China. Tell B, 2011, 63B: 382-394
[36]  17 Takegawa N, Miyakawa T, Kuwata M, et al. Variability of submicron aerosol observed at a rural site in Beijing in the summer of 2006. J Geophys Res, 2009, doi: 10.1029/2008JD010857
[37]  18 Jayne J T, Leard D C, Zhang X, et al. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci Technol, 2000, 33: 49-70
[38]  19 Jimenez J L, Jayne J T, Quan S, et al. Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. J Geophys Res, 2003, 108(D7): 8425, doi: 10.1029/2001JD001213
[39]  20 张养梅, 孙俊英, 张小曳, 等. 气溶胶质谱仪在研究大气气溶胶特征中的应用. 理化检验-化学分册, 2011, 47: 1371-1376
[40]  21 Cao J J, Lee S C, Ho K F, et al. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmos Environ, 2004, 38: 4447-4456
[41]  22 Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys Discuss, 2011, 11: 26571-26615
[42]  23 Tobias H J, Kooiman P M, Docherty K S, et al. Real-time chemical analysis of organics aerosols using a thermal desorption particle beam mass spectrometer. Aerosol Sci Technol, 2000, 33: 170-190
[43]  24 Matthew B M, Middlebrook A M, Onasch T B. Collection Efficiencies in an aerodyne aerosol mass spectrometer as a function of particle phase for laboratory generated aerosols. Aerosol Sci Technol, 2008, 42: 884-898

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133