全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

瓦里关大气CH4浓度变化及其潜在源区分析

, PP. 536-546

Keywords: 本底大气,甲烷(CH4),变化,源汇,源区分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用尺度校正和更新的2002~2006年瓦里关多年大气CH4浓度资料,进行了其浓度时空变化及其潜在源区分析研究.局部近似回归法筛分的大气CH4浓度本底数据百分比为~58%,表明其受到较强的区域源和汇的影响.CH4本底浓度中值为1831.8ppb,10%和90%的CH4浓度数据百分位值分别为1820.7和1843.5ppb.未经筛分的大气CH4浓度波动大,达到了200ppb;本底浓度波动小(约38ppb),反映了瓦里关大气CH4浓度受到较强的区域源汇影响.2002~2006年期间不同季节大气CH4浓度日变化规律明显,其变化特征是源汇强度变化和对流层大气扩散输送条件相互作用的结果.大气CH4多年平均季节变化呈夏季高(6~8月达到最大值),冬春低的特征,与美国莫纳罗亚山和Niwot岭呈反相位,一方面可能是夏季瓦里关地区排放源增强(居民放牧增多)和以来自西宁和兰州地区的气流为主导的污染物输送而导致其浓度抬升,另一方面瓦里关光化学作用较弱,与美国莫纳罗亚山和Niwot岭相比,CH4的汇较弱.轨迹聚类和潜在源区分析表明,大气CH4浓度高值与来自青海西北部(尤其是格尔木地区)和瓦里关东南或东部(西宁和兰州一带)的空气团轨迹关系密切,是CH4潜在的源区;其浓度低值则对应于来自西藏西北部、青海和新疆南部地区的空气团,反映了该方向的气流相对清洁.注意到夏季来自甘肃或宁夏黄河沿岸的农业区(如水稻种植区)空气团使CH4浓度抬升明显,显示了其农业排放源.本文的研究将对准确估算CH4区域源汇强度、全面理解温室效应的尺度及预测未来全球变化具有重要意义.

References

[1]  24 Sirois A, Bottenheim J W. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. J Geophys Res, 1995, 100: 2867-2881
[2]  25 Begum B A, Kim E, Jeong C H, et al. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos Environ, 2005, 39: 3719-3724
[3]  26 Ashbaugh L L, Malm W C, Sadeh W Z. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos Environ, 1985, 19: 1263-1270
[4]  27 Vasconcelos L A P, Kahl J D W, Liu D, et al. Spatial resolution of a transport inversion technique. J Geophys Res, 1996, 101: 19337-19342
[5]  28 Polissar A V, Hopke P K, Paatero P, et al. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos Environ, 1999, 33: 2441-2458
[6]  1 Battle M, Bender M, Sowers T, et al. Atmospheric gas concentrations over the past century measured in air from firn at the south pole. Nature, 1996, 383: 231-235
[7]  2 Lelieveld J, Crutzen P J, Dentener F J. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 1998, 50: 128-150
[8]  3 Chappellaz J, Barnola J M, Raynaud D, et al. Ice-core record of atmospheric methane over past 160000 years. Nature, 1990, 345: 127-131
[9]  4 Blake D R, Mayer E W, Tyler S C, et al. Global increase in atmospheric methane concentrations between 1978 and 1980. Geophys Res Lett, 1982, 9: 477-480
[10]  5 Rasmussen R, Khalil M. Atmospheric methane(CH4): Trends and seasonal cycles. J Geophys Res, 1981, 86: 9826-9832
[11]  6 Dlugokencky E J, Steele L P, Lang P M, et al. The growth rate and distribution of atmospheric methane. J Geophys Res, 1994, 99: 17021-17043
[12]  7 Crosson E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide and water vapor. Appl Phys, 2008, 92: 403-408
[13]  8 臧昆鹏, 周凌晞, 方双喜, 等. 新型CO2和CH4混合标气标校流程及方法. 环境化学, 2011, 30: 511-516
[14]  9 Zhou L X, Worthy D E, Lang J P M, et al. Ten years of atmospheric methane observations at a high elevation site in western China. Atmos Environ, 2004, 38: 7041-7054
[15]  10 WDCGG. World Data Center for Greenhouse Gases (WDCGG), Data Summary 34. Japan: Tokyo, 2010. 33: 1-105
[16]  11 Zhang F, Zhou L X, Novelli P C, et al. Evaluation of in situ measurements of atmospheric carbon monoxide at mount Waliguan. Atmos Chem Phys, 2011, 11: 5195-5206
[17]  12 Zhou L X, Tang J, Wen Y P, et al. The impact of local winds and long-range transport on the continuous carbon dioxide record at mount Waliguan, China. Tellus B, 2003, 55: 145-158
[18]  13 Zhou L X, Conway T J, White J W C, et al. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Background features and possible drivers, 1991-2002. Glob Biogeochem Cycle, 2005, GB3021, doi: 10.1029/2004GB002430
[19]  14 Zhou L X, White J W C, Conway T J, et al. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Seasonally averaged 1991-2002 source/sink signals, and a comparison of 1998-2002 record to the 11 selected sites in the northern hemisphere. Glob Biogeochem Cycle, 2006, GB2001, doi: 10.1029/2004GB002431
[20]  15 周凌晞, 汤洁, 张晓春, 等. 气相色谱法观测本底大气中的甲烷和二氧化碳. 环境科学学报, 1998, 18: 356-361
[21]  16 Ruckstuhl A F, Henne S, Reimann S, et al. Robust extraction of baseline signal of atmospheric trace species using local regression. Atmos Meas Tech Discuss, 2010, 3: 5589-5612
[22]  17 Andreas F R, Matthew P J, Robert W F, et al. Baseline subtraction using robust local regression estimation. J Quant Spect Radiat Transf, 2001, 68: 179-193
[23]  18 杨博. 青藏高原冬季放牧牦牛甲烷排放的初步研究. 硕士毕业论文. 兰州: 甘肃农业大学, 2009
[24]  19 王明星, 戴爱国, 黄俊, 等. 中国CH4排放量的估算. 大气科学, 1993, 17: 52-64
[25]  20 Dlugokencky E J, Myers R C, Lang P M, et al. Conversion of NOAA atmospheirc dry air CH4 mole fractions to a gravimetrically prepared standard scale. J Geophys Res, 2005, D18306, doi: 10.1029/2005JD006035
[26]  21 Ma J, Liu H, Hauglustaine D. Summertime tropospheric ozone over China simulated with a regional chemical transport model: 2. Source contribution and budget. J Geophys Res, 2002, doi: 10.1029/2001JD001355
[27]  22 Draxler R, Hess G D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust Met Mag, 1998, 47: 295-308
[28]  23 颜鹏, 黄健, Draxler R, 等. 北京地区SO2污染的长期模拟及不同类型排放源影响的计算与评估. 中国科学D辑: 地球科学, 2005, 35: 167-176

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133