全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含天然气水合物地层的孔隙度影响因素分析

, PP. 368-378

Keywords: 孔隙度,天然气水合物,孔隙度三分量,未固结成岩

Full-Text   Cite this paper   Add to My Lib

Abstract:

?孔隙度是计算含天然气水合物地层速度和饱和度的重要参数,对其影响因素分析是准确计算孔隙度的关键.孔隙度在垂向上的变化受到一系列因素的影响,不同因素对孔隙度的整体和局部变化作用机制不同.针对水合物赋存的海底未固结成岩地层,基于ODP164,ODP204和IODP311航次实际钻探资料,根据孔隙度的整体变化和局部变化特点,将孔隙度划分为低频、中频、高频三个分量,然后对各分量的主要影响因素进行分析,同时讨论了各因素对孔隙度的影响程度.结果表明,未固结成岩地层孔隙度极高,低频分量随深度逐渐减小的变化趋势受到了沉积物压实作用的影响,初始孔隙度和变化斜率分别与细粒沉积物的含量和地温梯度有关;孔隙度中频分量能够反映沉积物中的岩性变化,受不同粒度沉积物组分变化和分布情况以及水合物的影响;孔隙度高频分量主要受沉积物粒度变化不均匀的影响,同时火山灰富集砂岩层的出现会使高频分量出现高值异常.

References

[1]  1 Athy L F. Density, porosity, and compaction of sedimentary rocks. AAPG Bull, 1930, 14: 1-24
[2]  2 Rogers J J, Head W B. Relationships between porosity, median size, and sorting coefficients of synthetic sands. J Sediment Petrol, 1961, 31: 467-470
[3]  3 Scherer M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bull, 1987, 71: 485-491
[4]  4 刘震, 邵新军, 金博, 等. 压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响. 现代地质, 2007, 21: 125-132
[5]  5 Gipson M. A study of the relations of depth, porosity and clay mineral orientation in Pennsylvanian shales. J Sediment Petrol, 1966, 36: 888-903
[6]  6 Dzevanshir R D, Buryakovskiy L A, Chilingarian G V. Simple quantitative evaluation of porosity of argillaceous sediments at various depths of burial. Sediment Geol, 1986, 46: 169-175
[7]  7 Meade R H. Factors influencing the early stages of compaction of clays and sands--Review. J Sediment Petrol, 1966, 36: 1085-1101
[8]  8 Selley R C. Porosity gradients in North Sea oil-bearing sandstones. J Geol Soc Lond, 1978, 135: 119-132
[9]  9 Magara K. Comparison of porosity-depth relationships of shale and sandstone. J Pet Geol, 1980, 3: 175-185
[10]  10 Ramm M. Porosity-depth trends in reservoir sandstones: Theoretical models related to Jurassic sandstones offshore Norway. Mar Pet Geol, 1992, 9: 553-567
[11]  16 Ghosh R, Sain K, Ojha M. Estimating the amount of gas-hydrate using effective medium theory: A case study in the Blake Ridge. Mar Geophys Res, 2010, 31: 29-37
[12]  11 Ramm M, Bjorlykke K. Porosity/depth trends in reservoir sandstones: Assessing the quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian Shelf data. Clay Min, 1994, 29: 475-490
[13]  12 Dutta T, Mavko G, Mukerji T, et al. Compaction trends for shale and clean sandstone in shallow sediments, Gulf of Mexico. Leading Edge, 2009, 5: 590-596
[14]  13 Sloan E D. Clathrate Hydrates of Natural Gases. New York: Marcel Dekker. 1998
[15]  14 Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys Res Lett, 1999, 26: 2021-2024
[16]  15 Dai J C, Xu H B, Snyder F, et al. Detection and estimation of gas hydrates using rock physics and seismic inversion: Examples from the northern deepwater Gulf of Mexico. Leading Edge, 2004, 1: 60-66
[17]  17 Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program. Ocean Drilling Program, College Station, TX. Initial Reports, volume 164, 1996
[18]  18 Trehu A M, Bohrmann G, Rack F R, et al. Proceedings of the Ocean Drilling Program. Ocean Drilling Program, College Station, TX. Initial Reports, volume 204, 2003
[19]  19 Riedel M, Collett T S, Malone M J, et al. Proceedings of the Integrated Ocean Drilling Program. Intergrated Ocean Drilling Program, volume 311, 2005
[20]  20 Bassiouni Z. Theory, measurement, and interpretation of well logs. Society of Petroleum Engineers, 1994
[21]  21 Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics. AIME, 1942, 146: 54-62
[22]  22 Rubey W, Hubbert M K. Role of fluid pressure in mechanics of overthrust faulting, II. Geol Soc Am Bull, 1959, 70: 167-206
[23]  23 Hamilton E L. Sound velocity and related properties of marine sediments, North Pacific. J Geophys Res, 1970, 75: 4423-4446

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133