全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南海北部神狐海域沉积物中孔隙水硫酸盐梯度变化特征及其对天然气水合物的指示意义

, PP. 339-350

Keywords: 神狐海域,硫酸盐梯度,硫酸盐-甲烷界面(SMI),硫酸盐通量,BSR,天然气水合物

Full-Text   Cite this paper   Add to My Lib

Abstract:

?南海北部陆坡神狐海域是中国天然气水合物勘探最具潜力的区域之一.对该海域53个站位的孔隙水硫酸盐梯度、硫酸盐-甲烷界面(Sulfate-MethaneInterface,SMI)和硫酸盐通量等进行计算和综合分析,结果显示孔隙水SO42-浓度梯度范围为0.33~4.43mmolL-1m-1,SMI深度范围为7.7~87.9mbsf.计算得出硫酸盐通量范围为2.0~26.9mmolm-2a-1,平均为11.7mmolm-2a-1.53个站位的SMI深度与甲烷通量相关系数为-0.80,表明SMI深度受甲烷通量影响,甲烷通量控制了甲烷厌氧氧化反应(AnaerobicMethaneOxidation,AMO)的速率以及SMI的深度和硫酸盐通量.似海底反射(BottomSimulatingReflector,BSR)基本上分布于SMI埋深小于50mbsf或硫酸盐通量大于3.5mmolm-2a-1的区域,钻探获得水合物实物样品的SH2B,SH3B和SH7B三个钻孔的BSR埋深和SMI埋深的比值分别为8.36,8.60和9.94.结合地球化学和地球物理方法进行综合分析,认为白云凹陷和南部隆起是神狐海域天然气水合物发育的有利区.

References

[1]  43 Waseda A. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments. Geochem J, 1998, 3: 143-157
[2]  44 Feng D, Roberts H H . Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope. Earth Planet Sci Lett, 2011, 309: 89-99
[3]  45 Haese R R, Meile C, Van Cappellen P, et al. Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea. Earth Planet Sci Lett, 2003, 212: 361-375
[4]  46 Gieskes J, Mahn C, Day S, et al. A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments: Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin. Chem Geol, 2005, 220: 329-345
[5]  47 Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico. Mar Pet Geol, 2008, 25: 860-872
[6]  48 Chen Y F, Ussler III W, Haflidason H, et al. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway, Chem Geol, 2010, 275: 127-138
[7]  49 吴庐山, 杨胜雄, 梁金强, 等.南海北部神狐海域沉积物中烃类气体的地球化学特征.海洋地质前沿, 2011, 6: 1-10
[8]  50 Markl R G, Bryan G M, Ewing J I. Structure of the Blake-Bahama outer ridge. J Geophys Res, 1970, 75: 4539-4555
[9]  51 Hyndman R D, Spence G D. A seismic study of methane hydrate marine bottom simulating reflectors. J Geophys Res, 1992, 97: 6683-6698
[10]  52 Yuan T, Hyndman R D, Spence G D, et al. Seismic velocity increase and deep-sea hydrate concentration above a bottom simulating reflector on the northern Cascadian slope. J Geophys Res, 1996, 101: 13655-13671
[11]  53 宋海斌, 张岭, 江为为, 等.海洋天然气水合物的地球物理研究(Ⅲ): 似海底反射.地球物理学进展, 2003, 2: 182-187
[12]  54 Reed D L, Lundberg N, Liu C S, et al. Structural relations along the margin of the offshore Taiwan accretionary: Implications for accretion and crustal kinematics. Acta Geol Taiwan, 1992, 30: 105-122
[13]  55 姚伯初.南海北部陆缘天然气水合物初探.海洋地质与第四纪地质, 1998, 4: 11-18
[14]  56 张毅, 何丽娟, 徐行, 等.南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究.地球物理学进展, 2009, 1 : 183-194
[15]  57 方银霞, 初凤友.硫酸盐-甲烷界面与甲烷通量及下伏天然气水合物赋存的关系.海洋学研究, 2007, 1: 1-9
[16]  58 Fang Y X,Chu F Y. The relationship of sulfate-methane interface, the methane flux and the underlying gas hydrate. Mar Sci Bull, 2008, 1: 28-37
[17]  1 Berner R A. Early Diagenesis: A Theoretical Approach. Princeton NJ: Princeton University Press, 1980. 1-241
[18]  2 Westrich J T, Berner R A. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnol Oceanogr, 1984, 2: 236-249
[19]  3 Canfield D E. Sulfate reduction in deep-sea sediments. Am J Sci, 1991, 2: 177-188
[20]  4 Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett, 1976, 28: 337-344
[21]  5 Borowski W S, Paull C K, Ussler W III. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 1996, 7: 655-658
[22]  6 Borowski W S, Paull C K, Ussler W III. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar Geol, 1999, 159: 131-154
[23]  7 Borowski W S, Hoehler T M, Alperin M J, et al. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates. In: Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 164 [CD-ROM]. College Station, Texas: Texas A & M University (Ocean Drilling Program), 2000. 87-99
[24]  8 Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochim Cosmochim Acta, 2001, 4: 529-543
[25]  9 Borowski W S. Data report: Dissolved sulfide concentration and sulfur isotopic composition of sulfide and sulfate in pore waters, ODP Leg 204, Hydrate Ridge and vicinity, Cascadia Margin, offshore Oregon. In: Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program, Scientific Results Vol. 204 [CD-ROM]. College Station, Texas: Texas A & M University (Ocean Drilling Program), 2006. 1-13
[26]  10 Claypool G E, Kaplan I R. The origin and distribution of methane in sediments. In: Kaplan I R, ed Natural Gases in Marine Sediments. New York: Plenum Press, 1974. 99-139
[27]  11 Paull C K, Matsumoto R, Wallace P J, et al. Proceedings of the Ocean Drilling Program, Initial Reports. Vol. 164 [CD-ROM]. College Station, Texas: Texas A & M University (Ocean Drilling Program), 1996. 1-623
[28]  12 Shipboard Scientific Party, Site 1244. In: Tréhu A M, Bohrmann G, Rack F R, et al. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 204 [CD-ROM]. Ocean Drilling Program, Texas A&M University, College Station, USA. 2003. 1-132
[29]  13 Expedition 311 Scientists. Site U1328. In: Riedel M, Collett T S, Malone M J, and the Expedition 311 Scientists. Proc. IODP, 311: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.311.106. 2006. 1-136
[30]  14 杨涛, 蒋少涌, 葛璐, 等.南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义.科学通报, 2009, 20: 3231-3240
[31]  15 Feng D, Chen D F, Peckmann J. Rare earth elements in seep carbonates as tracers of variable redox conditions of ancient hydrocarbon seeps. Terr Nova, 2009, 21: 49-56
[32]  16 Feng D, Chen D F, Roberts H H. Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC185) gas vent and hydrate site of the Gulf of Mexico. Mar Pet Geol, 2009, 26: 1190-1198
[33]  17 Feng D, Chen D F, Peckmann J, et al. Authigenic carbonates from methane seeps of the northern Congo Fan: Microbial formation mechanism. Mar Pet Geol, 2010, 27: 748-756
[34]  18 Chen D F, Cathles L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: Application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico. J Geophys Res, 2003, 108 (B1), 2058, doi:10.1029/2001JB001597
[35]  19 Chen D F, Cathles L M, Roberts H H. The chemical signatures of variable gas venting at hydrate sites. Mar Pet Geol, 2004, 21: 317-326
[36]  20 Yang T, Jiang S Y, Yang J H, et al.. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea. J Oceanogr, 2008, 2: 303-310
[37]  21 Yang T, Jiang S Y, Ge L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence. Chin Sci Bull, 2010, 8: 752-760
[38]  22 吴能友, 张海啟, 杨胜雄, 等.南海神狐海域天然气水合物成藏系统初探. 天然气工业, 2007, 9: 1-6
[39]  23 Wu N Y, Zhang H Q, Yang S X, et al. Gas hydrate system of Shenhu Area, northern South China Sea: Geochemical results. J Geol Res Volume 2011. doi:10.1155/2011/370298
[40]  24 李家彪, 主编.中国边缘海形成演化与资源效应.北京: 地质出版社, 2008. 377-384
[41]  25 王存武, 陈红汉, 陈长民, 等.珠江口盆地白云深水扇特征及油气成藏主控因素.地球科学—中国地质大学学报, 2007, 2: 247-252, 266
[42]  26 Shipboard Scientific Party. Site 1146. In: Wang P X, Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports Volume 184 [CD-ROM]. College Station, Texas: Texas A & M University (Ocean Drilling Program ), 2000: 1-101
[43]  27 吴能友, 杨胜雄, 王宏斌, 等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系.地球物理学报, 2009, 6: 1641-1650
[44]  28 王家豪, 庞雄, 王存武, 等.珠江口盆地白云凹陷中央底辟带的发现及识别.地球科学—中国地质大学学报, 2006, 2: 209-213
[45]  29 龚跃华, 杨胜雄, 王宏斌, 等.南海北部神狐海域天然气水合物成藏特征.现代地质, 2009, 2: 210-216
[46]  30 匡增桂, 郭依群.南海北部神狐海域新近系以来沉积相及水合物成藏模式.地球科学—中国地质大学学报, 2011, 5: 914-920
[47]  31 Zhang H Q, Yang S X, Wu N Y, et al. Successful and surprising results for China’s first gas hydrate drilling expedition. Fire in the Ice: Methane Hydrate Newsletter, National Energy Technology Laboratory, U.S. Department of Energy, 2007, Fall, 6-9
[48]  32 程思海, 陆红锋.海洋沉积物孔隙水的制备方法.岩矿测试, 2005, 2: 102-104
[49]  33 杨涛, 蒋少涌, 赖鸣远, 等.连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究.地球化学, 2006, 6: 675-680
[50]  34 Iversen N, Jφrgensen B B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim Cosmochim Acta, 1993, 57: 57l-578
[51]  35 Coffin R, Hamdan L, Plummer R, et al. Analysis of methane and sulfate flux in methane-charged sediments from the Mississippi Canyon, Gulf of Mexico. Mar Pet Geol, 2008, 25: 977-987
[52]  36 Hensen C, Zabel M, Pfiefer K, et al. Control of sulfate porewater profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim Cosmochim Acta, 2003, 67: 2631-2647
[53]  37 Niew?hner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim Cosmochim Acta, 1998, 62: 455-464
[54]  38 Treude T, Niggemann J, Kallmeyer J, et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim Cosmochim Acta, 2005, 69: 2767-2779
[55]  39 Coffin R, Pohlman J, Gardner J, et al. Methane hydrate exploration on the Mid Chilean coast: A geochemical and geophysical survey. J Pet Sci Eng, 2006, 56: 32-41
[56]  40 Wu D D, Wu N Y, Yang R. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in the Dongsha Area, northern South China Sea. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 2011
[57]  41 Shipboard Scientific Party. Site 1144. In: Wang P X, Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 184[CD-ROM]. College Station, Texas: Texas A & M University (Ocean Drilling Program ), 2000. 1-97
[58]  42 Berner R A. Sulfate reduction and the rate of deposition of marine sediments. Earth Planet Sci Lett, 1978, 37: 492-498

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133