全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南海北部琼东南盆地HQ-1PC沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义

DOI: 10.1007/s11430-012-4560-7, PP. 329-338

Keywords: 孔隙水,地球化学,天然气水合物,琼东南

Full-Text   Cite this paper   Add to My Lib

Abstract:

?HQ-1PC站位位于琼东南盆地中部,对该站位沉积物孔隙水的地球化学分析发现其3~4m处有明显的盐度异常,说明该站位在沉积物浅表层有明显的高盐度流体加入.其他地球化学特征也显示在该深度有一亏损硫酸盐、富含碘的流体加入,这种流体特征与水合物形成时排放的高盐流体相似.在4m以下,HQ-1PC站位则表现出了明显的甲烷厌氧氧化特征,主要表现为浅的硫酸盐还原界限、高硫酸盐通量、高自生碳酸盐沉积等特征,同时在该深度以下碘也表现出了异常高的通量,暗示HQ-1PC站位所在区域具有高的有机质含量,微生物活动强烈,可为水合物的形成提供充足的气源.再结合明显的盐度异常特征,推测在该站位浅表层附近很有可能有天然气水合物生成,水合物在形成过程中排出的高盐流体及散逸出的甲烷气引起了一系列的地球化学异常现象.

References

[1]  1 Paul C, Brian J S. Pore-water chemistry. The Oxford Companion to the Earth. http://www.encyclopedia.com/doc/1O112pore- waterchemistry.html, 2000
[2]  2 Aller R. Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry. Am J Sci, 1978, 278: 1185-1234
[3]  3 McCaffrey R J, Myers A C, Davey E, et al. The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island. Limnol Oceanogr, 1980, 25: 31-44
[4]  4 Budd D A. Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: Insights from pore-water chemistry. Bull Geol Soc Am, 1988, 100: 1260-1270
[5]  5 Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico. Mar Petrol Geol, 2008, 25: 860-872
[6]  10 Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 1996, 24: 655-658
[7]  11 Borowski W S, Paull C K, Ussler III W. Carbon cycling within the upper methanogenic zone of continental rise sediments: An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Mar Chem, 1997, 57: 299-311
[8]  12 Feng D, Chen D F, Peckmann J. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 2009, 21: 49-56
[9]  13 Feng D, Chen D F, Roberts H H. Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico. Mar Petrol Geol, 2009, 26: 1190-1198
[10]  14 Feng D, Chen D F, Peckmann J, et al. Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism. Mar Petrol Geol, 2010, 27: 748-756
[11]  15 Chen D F, Cathles L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: Application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico. J Geophys Res, 2003, 108: 2058
[12]  16 Chen D F, Cathles L M, Roberts H H. The geochemical signatures of variable gas venting at gas hydrate sites. Mar Petrol Geol, 2004, 21: 317-326
[13]  17 吴能友, 张海放, 杨胜雄. 南海神狐海域天然气水合物成藏系统初探. 天然气工业, 2007, 27: 1-6
[14]  18 吴能友, 邬黛黛, 叶瑛, 等. 南海东北部东沙海域沉积物烃类有机地球化学研究及其意义. 南海地质研究, 2007, (1): 1-14
[15]  19 蒋少涌, 杨涛, 薛紫晨, 等. 南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义. 现代地质, 2005, 19: 45-54
[16]  20 Jiang S Y, Yang T, Ge L, et al. Geochemistry of pore waters from the Xisha Trough, northern South China Sea and their implications for gas hydrates. J Oceanogr, 2008, 64: 459-470
[17]  21 Yang T, Jiang S Y, Yang J H, et al. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea. J Oceanogr, 2008, 64: 303-310
[18]  22 杨涛, 蒋少涌, 葛璐, 等. 南海北部神狐海域浅表层沉积物中孔隙水的地球化学特征及其对天然气水合物的指示意义. 科学通报, 2009, 20: 3231-3240
[19]  23 姚伯初. 南海的天然气水合物矿藏. 热带海洋学报, 2001, 20: 20-28
[20]  24 姚伯初. 南海天然气水合物的形成条件和分布特征. 海洋石油, 2007, 27: 1-10
[21]  25 王宏斌, 张光学, 杨木壮, 等. 南海陆坡天然气水合物成藏的构造环境. 海洋地质与第四纪地质, 2003, 23: 81-86
[22]  26 王宏斌, 梁劲, 龚跃华, 等. 基于天然气水合物地震数据计算南海北部陆坡海底热流. 现代地质, 2005, 19: 67-73
[23]  27 张岭, 宋海斌. 天然气水合物体系动态演化研究(Ⅲ): 水合物的产生、聚集和分解. 地球物理学进展, 2003, 18: 592-597
[24]  28 陈多福, 赵振华, 解启来, 等. 琼东南盆地崖13气田天然气形成水合物的温压条件和厚度计算. 地球化学, 2001, 30: 585-591
[25]  29 陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测. 地球物理学报, 2004, 47: 483-489
[26]  30 Li Y H, Gregory S. Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta, 1974, 38: 703-714
[27]  31 Wang P, Prell W L, Blum P. Proceedings of the Ocean Drilling Program. Initial Reports, 184. Ocean Drilling Program, College Station, TX, 2000
[28]  32 Kvenvolden K A, Kastner M. Gas hydrate of the Peruvian outer continental margin. In: Suess E R, von Huene R, Emeis K, eds. Proceedings of Ocean Drilling Program. Scienti?c Results, Volume 112. College Station, Texas, Ocean Drilling Program, 1990. 517-526
[29]  33 Aloisi G, Pierre C, Rouchy J M, et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett, 2000, 184: 321-338
[30]  34 Paull C K, Matsumoto R, Wallace P, et al. Gas hydrate sampling on the Blake Ridge and Carolina Rise. Proceedings of the Ocean Drilling Program. Initial Report, 164. Ocean Drilling Program, College Station, TX, 1996
[31]  35 Torres M E, Wallmann K, Trehu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth Planet Sci Lett, 2004, 226: 225-241
[32]  47 Gingele F, Dahmke A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments. Paleoceanography, 1994, 9: 151-168
[33]  48 Brumsack H J, Gieskes J M. Interstitial water trace metal chemistry of laminated sediments from the Gulf of California, Mexico. Mar Chem, 1983, 14: 89-106
[34]  49 Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: A new look at barium mobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem Geol, 1996, 127: 125-139
[35]  50 Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochim Cosmochim Acta, 2001, 65: 529-543
[36]  51 Lu Z, Hensen C, Fehn U, et al. Halogen and I-129 systematics in gas hydrate fields at the northern Cascadia margin (IODP Expedition 311): Insights from numerical modeling. Geochem Geophys Geosys, 2008, 9: Q10006
[37]  52 Lu Z, Tomaru H, Fehn U. Iodine ages of pore waters at Hydrate Ridge (ODP Leg 204), Cascadia Margin: Implications for sources of methane in gas hydrates. Earth Planet Sci Lett, 2008, 267: 654-665
[38]  53 Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chem Geol, 1999, 153: 53-79
[39]  54 Matsumoto R, Borowski W S. Gas hydrate estimates from newly determined oxygen isotope fractionation (aGH-IW) and δ18O anomalies of the interstitial waters: Leg 164, Blake Ridge. In: Paull C K, Matsumoto R, Wallace P J, et al, eds. Proceedings of the Ocean Drilling Program Scienti?c results. Volume 164. College Station, Texas, Ocean Drilling Program, 2000. 59-66
[40]  6 Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface— What have we learned in the past decade? Earth Sci Rev, 2003, 61: 149-179
[41]  7 Pierre C, Fouquet Y. Authigenic carbonates from methane seeps of the Congo deep-sea fan. Geo-Mar Lett, 2007, 27: 249-257
[42]  8 Tomaru H, Lu Z L, Snyder G T, et al. Origin and age of pore waters in an actively venting gas hydrate field near Sado Island, Japan Sea: Interpretation of halogen and I-129 distributions. Chem Geol, 2007, 236: 350-366
[43]  9 Malinverno A, Kastner M, Torres M, et al. Gas hydrate occurrence from pore water chlorinity and downhole logs in a transect across the northern Cascadia margin (Integrated Ocean Drilling Program Expedition 311). J Geophys Res, 2008, 113: B08103
[44]  36 Hesse R, Harrison W E. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet Sci Lett, 1981, 55: 453-462
[45]  37 Borowski W S, Paull C K, Ussler W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar Geol, 1999, 159: 131-154
[46]  38 Suess E, Torres M E, Bohrmann G, et al. Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett, 1999, 170: 1-15
[47]  39 Tryon M D, Brown K M, Torres M E. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. Earth Planet Sci Lett, 2002, 201: 541-557
[48]  40 Torres M E, McManus J, Hammond D E, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces. Earth Planet Sci Lett, 2002, 201: 525-540
[49]  41 Birgel D, Feng D, Roberts H H, et al. Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chem Geol, 2011, 285: 82-96
[50]  42 Feng D, Roberts H H. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope. Earth Planet Sci Lett, 2011, 309: 89-99
[51]  43 Kastner M, Elderfield H, Martin J B, et al. Diagenesis and interstitial water chemistry at the Peruvian continental margin—Major constituents and strontium isotopes. In: Suess E R, von Huene R, Emeis K, eds. Proceedings of the Ocean Drilling Program Scienti?c Results, Volume 112. College Station, Texas, Ocean Drilling Program, 1990. 413-440
[52]  44 Rodriguez N M, Paull C K, Borowski W S. Zonation of authigenic carbonates within gas hydrate-bearing sedimentary sections on the Blake Ridge: Offshore southeastern north America. In: Paull C K, Matsumoto R, Wallace P J, et al, eds. Proceedings of the Ocean Drilling Program Scienti?c Results, Volume 164. College Station, Texas, Ocean Drilling Program, 2000. 301-312
[53]  45 Riedel M, Collett T S, Malone M J, et al. Proceedings of the integrated ocean drilling program. Expedition Reports 311. Integrated Ocean Drilling Program, College Station, TX. 2005
[54]  46 Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanog, 1992, 7: 163-181

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133