全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多年冻土区铁路路基热状况对工程扰动及气候变化的响应

, PP. 478-489

Keywords: 多年冻土,热状况,工程扰动,气候变化,青藏铁路

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于青藏铁路沿线长期地温监测资料,对天然场地及铁路路基下部的浅层地温、多年冻土上限及下伏冻土地温动态变化过程进行对比分析,研究多年冻土区铁路路基热状况对于工程扰动及气候变化的响应过程.监测结果表明,路基修筑后边坡热效应显著,由此导致路基下部多年冻土热状况的不对称分布,必须引起足够的重视.块石路基修筑后,下部多年冻土上限抬升显著,其中阴坡路肩下抬升幅度普遍较阳坡路肩下显著.普通路基修筑后,在年平均地温低于-0.6~-0.7℃的地区下部多年冻土上限有不同程度的抬升,而在年平均地温高于-0.6℃的地区下部冻土上限则出现了一定程度的下降,其中阳坡路肩下降幅显著.受块石层冷却降温作用,低温冻土区块石路基下部浅层冻土地温有明显降温过程,而在高温冻土区这一降温趋势只存在于阴坡路肩下.对于普通路基,多年冻土上限抬升后,浅层冻土地温存在一定的升温过程.对于气候变暖,低温冻土区多年冻土的响应主要集中体现在冻土升温上,而高温冻土区多年冻土的响应则主要表现为冻土上限下降,冻土厚度减小.基于上述监测结果,可将目前青藏铁路路基热状况分为稳定型(低温冻土区块石路基)、亚稳定型(低温冻土区普通路基及高温冻土区块石路基)和不稳定型(高温冻土区普通路基).

References

[1]  1 Muller S W. Permafrost or permanently frozen ground and related engineering problems. U.S. Engineers Office, Strategic Engineering Study, Special Report No. 62, 1943
[2]  2 周幼吾, 郭东信, 邱国庆, 等. 中国冻土. 北京: 科学出版社, 2000
[3]  3 Instanes A. Infrastructure: Buildings, support systems, and industrial facilities. In: Instanes A, Anisimov O, Brigham L, et al, eds. Arctic Climate Impact Assessment: Scientific Report. Cambridge: Cambridge University Press, 2005. 907-944
[4]  4 Bommer C, Phillips M, Arenson L U. Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost. Permafrost Periglacial Processes, 2010, 21: 97-104
[5]  5 程国栋. 用冷却路基的方法修建青藏铁路. 中国铁道科学, 2003, 24: 1-4
[6]  6 马巍, 程国栋, 吴青柏. 多年冻土地区主动冷却地基方法研究. 冰川冻土, 2002, 24: 579-587
[7]  7 程国栋. 中国青藏高原多年冻土与加拿大北部多年冻土的一些差别. 冰川冻土, 1980, 2: 39-43
[8]  8 Wang B L, Hugh M F. Permafrost on the Tibet Plateau, China. Quat Sci Rev, 1995, 14: 255-274
[9]  9 Li X, Cheng G D, Jin H J, et al. Cryospheric change in China. Glob Planet Change, 2008, 62: 210-218
[10]  10 Jin H J, Yu Q H, Wang S L, et al. Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Regions Sci Technol, 2008, 53: 317-333
[11]  11 Wu Q B, Zhang T J, Liu Y Z. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob Planet Change, 2010, 72: 32-38
[12]  12 Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res, 2007, 112: F02S03
[13]  13 金会军, 赵林, 王绍令, 等. 青藏公路沿线冻土的地温特征及退化方式. 中国科学D辑: 地球科学, 2006, 36: 1009-1019
[14]  14 Wang S L, Jin H J, Li S X, et al. Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts. Permafrost Periglacial Process, 2000, 11: 43-53
[15]  15 Wu Q B, Liu Y Z. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold Regions Sci Technol, 2004, 38: 85-92
[16]  16 Wu Q B, Zhang T J. Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res, 2008, 113: D13108
[17]  17 Wu Q B, Zhang T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res, 2010, 115: D09107
[18]  18 Anderland O B, Ladanyi B. Frozen Ground Engineering. New Jersey: John Wiley & Sons. Inc., 2004
[19]  19 Ma W, Cheng G D, Wu Q B. Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet Railroad. Cold Regions Sci Technol, 2009, 59: 3-11
[20]  20 程国栋, 吴青柏, 马巍. 青藏铁路主动冷却路基的工程效果. 中国科学E辑: 技术科学, 2009, 39: 16-22
[21]  21 吴青柏, 程国栋, 马巍, 等. 青藏铁路适应气候变化的筑路工程技术. 气候变化研究进展, 2007, 3: 315-321
[22]  22 Ma W, Feng G L, Wu Q B, et al. Analyses of temperature fields under the embankment with crushed-rock structures along the Qinghai-Tibet Railway. Cold Regions Sci Technol, 2008, 53: 259-270
[23]  23 吴青柏, 赵世运, 马巍, 等. 青藏铁路块石路基结构的冷却效果监测分析. 岩土工程学报, 2005, 27: 1386-1390
[24]  24 Ma W, Cheng G D, Wu Q B, et al. Application on idea of dynamic design in Qinghai-Tibet Railway construction. Cold Regions Sci Technol, 2005, 41: 165-173
[25]  25 Ma W, Mu Y H, Wu Q B, et al. Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions. Cold Regions Sci Technol, 2011, 67: 178-186
[26]  26 Wu Q B, Li M Y, Liu Y Z. Thermal Interaction between permafrost and the Qinghai-Tibet Railway. J Cold Regions Engineering, 2010, 24: 112-125
[27]  27 吴青柏, 程国栋, 马巍. 多年冻土变化对青藏铁路工程的影响. 中国科学D辑: 地球科学, 2003, 33(增刊): 115-122
[28]  28 吴青柏, 施斌, 刘永智. 青藏公路沿线多年冻土与公路相互作用研究. 中国科学D辑: 地球科学, 2002, 32: 514-520
[29]  29 吴青柏, 董献付, 刘永智. 青藏公路沿线多年冻土对气候变化和工程影响的响应分析. 冰川冻土, 2005, 27: 50-54
[30]  30 Brown R J E. Influence of climatic and terrain factors on ground temperatures at three locations in the permafrost region of Canada. In: 2nd International Conference on Permafrost, Proceedings, North American Contribution, 1973. 27-34
[31]  31 Lutin J N, Guymon G L. Soil moisture-vegetation-temperature relationships in central Alaska. J Hydrol, 1974, 23: 233-246
[32]  32 Smith M W. Microclimatic influences on ground temperatures and permafrost distribution, Mackenzie Delta, Northwest Territories. Can J Earth Sci, 1975, 12: 1421-1438
[33]  33 程国栋. 局地因素对多年冻土分布的影响及其对青藏铁路设计的启示. 中国科学D辑: 地球科学, 2003, 33: 602-607
[34]  34 Cheng G D, Sun Z Z, Niu F J. Application of the roadbed cooling approach in Qinghai-Tibet Railway engineering. Cold Regions Sci Technol, 2008, 53: 241-258
[35]  35 Zhang T. Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev Geophys, 2005, 43: RG4002, doi: 10.1029/2004RG000157
[36]  36 Smith S L, Wolfe S A, Risborough D W, et al. Active layer characteristics and summer climate indices, Mackenzie Valley. Northwest Territories, Canada. Permafrost Periglacial Process, 2009, 20: 201-220
[37]  37 Woo M K, Mollinga M, Smith S L. Climate warming and active layer thaw in the boreal and tundra environments of the Mackenzie Valley. Can J Earth Sci, 2007, 44: 733-743
[38]  38 胡泽勇, 钱泽雨, 程国栋, 等. 太阳辐射对青藏铁路路基表面热状况的影响. 冰川冻土, 2002, 24: 121-128
[39]  39 程国栋, 张建明, 盛煜, 等. 保护冻土的保温原理. 上海师范大学学报(自然科学版), 2003, 32: 1-6
[40]  40 程国栋, 童伯良, 罗学波. 路堤填土对冻土上限的影响. 青藏冻土研究论文集. 北京: 科学出版社, 1983. 195-203
[41]  41 吴紫汪, 程国栋, 朱林楠, 等. 冻土路基工程. 兰州: 兰州大学出版社, 1988
[42]  42 吴紫汪, 朱林楠, 郭信民, 等. 青藏公路多年冻土区路堤的临界高度. 冰川冻土, 1998, 20: 36-40
[43]  43 丁靖康, 郝贵生. 年平均气温临界值—设计青藏高原多年冻土区路堤临界高度的一个重要因素. 冰川冻土, 2000, 22: 333-339
[44]  44 Liu X D, Chen B D. Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol, 2000, 20: 1729-1742
[45]  45 王绍令, 赵秀峰, 郭东信, 等. 青藏高原冻土对气候变化的响应. 冰川冻土, 1996, 18: 157-165
[46]  46 吴青柏, 陆子建, 刘永智. 青藏高原多年冻土监测及近期变化. 气候变化研究进展, 2005, 1: 26-28
[47]  47 吴吉春, 盛煜, 吴青柏, 等. 青藏高原多年冻土退化过程及方式. 中国科学D辑: 地球科学, 2009, 39: 1570-1578

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133