全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

孔隙水渗流通量对渗漏型天然气水合物影响的数值模拟

, PP. 379-390

Keywords: 海底冷泉,流体渗漏,温度,盐度,天然气水合物,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

?海底冷泉活动区不仅有天然气向海底的渗漏,同时还存在孔隙水的对流,并可能改变天然气水合物体系的温度和盐度,进而影响天然气水合物的成藏.利用建立的天然气水合物生成动力学模型和水合物脊南部高地实测的温度和盐度等条件,模拟了三种典型流体活动区(生物蛤区、细菌席区和冒气区)不同的流体通量条件下天然气水合物的成藏过程.其中生物蛤区孔隙水通量<20kgm-2a-1,模拟表明孔隙水对流作用对体系的温度和盐度无影响或影响很小,由于天然气水合物生成作用,体系盐度升高显著(最高>0.8molkg-1),温度发生一定的升高,天然气水合物稳定带底界逐步升高到约70mbsf,水合物饱和度高.细菌席区孔隙水通量100~2500kgm-2a-1,孔隙水对流作用抑制了盐度升高,同时使体系温度升高显著,模拟的盐度为海水值或略高于海水值(<0.65molkg-1),同时天然气水合物稳定带底界显著上升到浅层50mbsf以上,甚至可达浅层3mbsf,天然气水合物饱和度较低.而在冒气区,孔隙水通量可达1010kgm-2a-1,经历9min渗漏,通道温度达到流体源区值,通道内无天然气水合物生成.因而,模拟结果表明孔隙水通量越高,孔隙水盐度越低,温度上升越显著,天然气水合物稳定带底界上移越显著,单位面积天然气水合物生成速率也越低,天然气水合物饱和度越小,天然气水合物资源量越小.

References

[1]  24 Liu X, Flemings P B. Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon. Earth Planet Sci Lett, 2006, 241: 211-226
[2]  25 杨顶辉, Xu W. 盐度对甲烷气水合物系统的影响. 中国科学 D 辑: 地球科学, 2007, 37: 1370-1381
[3]  26 Torres M E, Wallmann K, Trehu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth Planet Sci Lett, 2004, 226: 225-241
[4]  27 Heeschen K U, Trehu A M, Collier R W, et al. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging. Geophys Res Lett, 2003, 30: 1643
[5]  28 Heeschen K U, Collier R W, Angelis M A, et al. Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadial Margin. Global Biogeochem Cycle, 2005, 19: GB2016
[6]  29 Milkov A V, Lee Y J, Borowski W S, et al. Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): Evidence from prolonged degassing of a pressurized core. Earth Planet Sci Lett, 2004, 222: 829-843
[7]  30 Milkov A V, Xu W. Comment on “Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon” by Torres et al. Earth Planet Sci Lett, 2005, 239: 162-167
[8]  31 Chen D F, Cathles L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: Application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico. J Geophys Res, 2003, 108: 2058
[9]  32 Sun R, Duan Z. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments. Chem Geol, 2007, 244: 248-262
[10]  33 Cathles L M, Chen D F. A compositional kinetic model of hydrate crystallization and dissolution, J Geophys Res, 2004, 109: B08102
[11]  34 Davie M K, Buffett B A. A numerical model for the formation of gas hydrate below the seafloor. J Geophys Res, 2001, 106: 497-514
[12]  35 Rueff R M, Sloan E D, Yesavage V F. Heat capacity and heat of dissociation of methane hydrates. Am Inst Chem Eng, 1988, 34: 1468-1476
[13]  36 Sloan D E, Koh C A. Clathrate Hydrates of Natural Gases. 3rd ed. New York: CRC Press, 2008
[14]  37 Treude T, Boetius A, Knittel K, et al. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean. Mar Ecol Prog Ser, 2003, 264: 1-14
[15]  1 Dimitrov I, Woodside J. Mud volcanoes—The most important pathway for degassing deeply buried sediments. Earth-Sci Rev, 2002, 59: 49-76
[16]  2 Mazurenko L L, Soloviev V A. Worldwide distribution of deep-water fluid venting and potential occurrences of gas hydrate accumulations. Geol-Mar Lett, 2003, 23: 162-176
[17]  3 Judd A, Hovland M. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge: Cambridge University Press, 2007
[18]  4 MacDonald I R, Guinasso N L, Sassen J R, et al. Gas hydrate that breaches the seafloor on the continental slope of the gulf of Mexico. Geology, 1994, 22: 699-702
[19]  5 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征. 沉积学报, 2002, 20: 34-40
[20]  6 Chen D F, Cathles L M, Roberts H H. The chemical signatures of variable gas venting at hydrate sites. Mar Pet Geol, 2004, 21: 317-326
[21]  7 Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics. Terr Atmos Ocean Sci, 2006, 17: 723-737
[22]  8 Paull C K, Borowski W S, Spiess F N. Methane-rich plumes on the Carolina continental rise: Associations with gas hydrates. Geology, 1995, 23: 89-92
[23]  9 Sassen R, Losh S L, Cathles L. Massive vein-filling gas hydrate: Relation to ongoing gas migration from the deep subsurface in the gulf of Mexico. Mar Pet Geol, 2001, 18: 551-560
[24]  10 MacDonald I R, Sager W W, Peccini M B. Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern gulf of Mexico. Mar Geol, 2003, 198: 133-158
[25]  11 Trehu A M, Bohrmann G, Rack F R, et al. Proceedings of the Ocean Drilling Program. Initial Report, Vol. 204. 2003
[26]  12 Ginsburg G D, Soloviev V A, Cranston R E. Gas Hydrates from the continental slope offshore Sakhalin Island, Okhotsk Sea. Geol-Mar Lett, 1993, 13: 41-48
[27]  13 Pinheiro L M, Ivnov M K, Sautkin A, et al. Mud volcanism in the gulf of Cadiz: Results from the TTR-10 Cruise. Mar Geol, 2003, 195: 131-151
[28]  14 Naudts L, Greinert J, Poort J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive-versus bubble-released methane. Mar Geol, 2010, 272: 233-250
[29]  15 Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol, 2000, 167: 29-42
[30]  16 Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the gulf of Mexico continental slope. Mar Pet Geol, 2003, 20: 111-128
[31]  17 Trehu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204. Earth Planet Sci Lett, 2004, 222: 845-862
[32]  18 Tryon M D, Brown K M, Torres M E. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. Earth Planet Sci Lett, 2002, 201: 541-557
[33]  19 Torres M E, McManus J, Hammond D E, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR:, I: Hydrological provinces. Earth Planet Sci Lett, 2002, 201: 525-540
[34]  20 Buerk D, Klaucke I, Sahling H, et al. Morpho-acoustic variability of cold seeps on the continental slope offshore Nicaragua: Result of fluid flow interaction with sedimentary processes. Mar Geol, 2010, 275: 53-65
[35]  21 Tryon M D, Brown K M. Fluid and chemical cycling at Bush Hill: Implications for gas- and hydrate-rich environments. Geochem Geophys Geosyst, 2004, 5: Q12004
[36]  22 Chen D F, Cathles L M. On the thermal impact of gas venting and hydrate crystallization. J Geophys Res, 2005, 110: B11204
[37]  23 Cathles L M, Chen D F, Nicholson B A. A dimensionless vent number characterizing the thermal impact of fluid discharge through planar and cylindrical vents with particular application to seafloor gas vents crystallizing hydrate. J Geophys Res, 2006, 111: B10205

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133