全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

湘桂震旦-寒武纪沉积岩组成的变化—对华南构造演化的指示

, PP. 1893-1906

Keywords: 地球化学,锆石U-Pb定年,震旦纪沉积岩,寒武纪沉积岩,扬子和华夏地块界线

Full-Text   Cite this paper   Add to My Lib

Abstract:

?对位于湘桂交界的苗儿山地区和湘南金鸡岭地区的震旦纪和寒武纪地层浅变质岩进行了地球化学和碎屑锆石U-Pb年代学研究.岩相学和地球化学结果显示这些浅变质岩的原岩为陆源碎屑沉积岩,具有中等风化程度,形成于被动大陆边缘.地球化学和碎屑锆石U-Pb年龄特征表明金鸡岭地区震旦纪和寒武纪沉积岩的碎屑物组成具有相似性,都以含大量的Grenville期年龄的碎屑锆石为特征,表现出与华夏地块明显的亲缘性.苗儿山地区的寒武纪沉积岩显示出与金鸡岭地区沉积岩相似的地球化学和碎屑锆石年代学特征,也具有华夏地块的亲缘性.而苗儿山地区的震旦纪沉积岩在地球化学上不同于苗儿山的寒武纪沉积岩以及金鸡岭地区的沉积岩,并且以含丰富840~700Ma以及少量的2.0Ga碎屑锆石为特征,具有明显的扬子地块的亲缘性.这些差异表明从震旦纪到寒武纪,金鸡岭地区沉积盆地一直稳定地接受来自华夏地块的碎屑物质,而苗儿山地区沉积盆地的物源区却从扬子地块转变为华夏地块.说明在中晚寒武纪之前发生了一次构造运动,使苗儿山盆地进一步沉陷或盆地中心发生了向西北的转移,从而使苗儿山地区接受了来自华夏地块的碎屑物.这一事实也表明扬子地块和华夏地块这时已经聚合,它们之间在西南地区的分界线就在苗儿山与金鸡岭之间.

References

[1]  柏道远, 周亮, 王先辉, 等. 2007. 湘东南南华系-寒武系砂岩地球化学特征及对华南新元古代-早古生代构造背景的制约. 地质学报, 81: 755-771
[2]  陈凌云, 张忠伟. 2003. 加里东期扬子陆块与南华活动带在广西境内分界线的探讨. 南方国土资源, 12: 8-19
[3]  陈懋弘, 梁金城, 张桂林, 等. 2006. 加里东期扬子陆块与华夏板块西南段分界线的岩相古地理制约. 高校地质学报, 12: 111-122
[4]  董云鹏, 朱炳泉, 常向阳, 等. 2002. 滇东师宗-弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约. 岩石学报, 18: 37-46
[5]  郭令智, 施央申, 马瑞士, 等. 1981. 中国东南部地体构造的研究. 南京大学学报(自然科学版), 20: 782-739
[6]  顾雪祥, 刘建明, Oskar S, 等. 2003. 江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约. 地球化学, 32: 406-426
[7]  广西壮族自治区地质矿产局. 1985. 广西壮族自治区区域地质志. 北京: 地质出版社. 853
[8]  洪大卫, 谢锡林, 张季生. 2002. 试析杭州-诸广山-花山高值εNd花岗岩带的地质意义. 地质通报, 21: 348-354
[9]  湖南省地质矿产局. 1988. 湖南省区域地质志. 北京: 地质出版社. 663
[10]  胡肇荣, 邓国辉. 2009. 钦杭结合带之构造特征. 东华理工大学学报, 32: 114-122
[11]  康自立, 吴伟成, 祝民强. 1991. 新资断裂带的构造地球化学特征. 铀矿地质, 7: 137-145
[12]  魏震洋, 于津海, 王丽娟, 等. 2009. 南岭地区新元古代变质沉积岩的地球化学特征及构造意义. 地球化学, 38: 1-19
[13]  王丽娟, 于津海, O''Reilly S Y, 等. 2008. 华夏南部可能存在Grenville期造山作用: 来自基底变质岩中锆石U-Pb定年及Lu-Hf同位素信息. 科学通报, 53: 1680-1692
[14]  夏斌. 1984. 广西龙胜元古代二种不同成因蛇绿岩岩石地球化学及侵位方式研究. 南京大学学报(自然科学版), 3: 554-566
[15]  杨明桂, 梅勇文. 1997. 钦-杭古板块结合带与成矿带的主要特征. 华南地质与矿产, 3: 52-59
[16]  于津海, 魏震洋, 王丽娟, 等. 2006. 华夏地块: 一个由古老物质组成的年轻陆块. 高校地质学报, 12: 440-447
[17]  于津海, O''Reilly Y S, 王丽娟, 等. 2007. 华夏地块古老物质的发现和前寒武纪地壳的形成. 科学通报, 52: 11-18
[18]  杨崇辉, 耿元生, 杜利林, 等. 2009. 扬子地块西缘Grenville 期花岗岩的厘定及其地质意义. 中国地质, 36: 647-657
[19]  Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23: 921-924
[20]  Greentree M R, Li Z X. 2008. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrial provenance analysis of the Paleoproterozoic Dahongshan Group. Asian Earth Sci, 33: 289-302
[21]  Gromet L P, Haskin L A, Korotev R L, et al. 1984. The “North American Shale Composite”: Its compilation, major and trace element characteristics. Geochim Cosmochim Acta, 48: 2469-2482
[22]  Guo L G, Liu Y P, Li C Y, et al. 2009. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan Province, China: Implications for the collision between the Yangtze and Cathaysia blocks. Geochem J, 473: 101-122
[23]  Jackson S E, Pearson N J, Griffin W L, et al. 2004. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ U-Pb zircon geochronology. Chem Geol, 211: 47-69
[24]  Li X H, Li W X, Li Z X, et al. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res, 174: 117-128
[25]  Li X H. 1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Res, 97: 43-57
[26]  Liu X M, Gao S, Diwu C R, et al. 2008. Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. Am J Sci, 308: 421-468
[27]  Mclennan S M, Hemming S, Mcdaniel D K, et al. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geol Soc Am, 284: 21-40
[28]  Xu D R, Gu X X, Li P C, et al. 2007a. Mesoproterozoic-Neoproterozoic transition: Geochemistry, provenance and tectonic setting of clastic sedimentary. J Asian Earth Sci, 29: 637-650
[29]  Xu X S, O''Reilly S Y, Griffin W L, et al. 2007b. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Res, 158: 51-78
[30]  Ye M F, Li X H, Li W X, et al. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Res. 12: 144-156
[31]  Yu J H, O''Reilly S Y, Wang L J, et al. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Res, 164: 1-15
[32]  Yu J H, O''Reilly S Y, Wang L J, et al. 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. Precambrian Res, 181: 97-114
[33]  Zhang Z J, Wang Y H. 2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Phys Earth Planet Inter, 165: 114-126
[34]  Zhao J H, Zhou M F, Yan D P, et al. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39: 299-302
[35]  Zheng J P, Griffin W L, O''Reilly S Y, et al. 2006. Widespread Archean basement beneath the Yangtze Craton. Geology, 34: 417-420
[36]  郑永飞, 张少兵. 2007. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 52: 1-10
[37]  张少兵, 郑永飞. 2007. 扬子陆核的生长和再造: 锆石U-Pb年龄和Hf同位素研究. 岩石学报, 23: 393-402
[38]  张纯臣, 谭正修, 朱伦杰, 等. 1997. 全国地层多重划分对比研究: 湖南省岩石地层. 武汉: 中国地质大学出版社. 269
[39]  张明华, 梁锦叶, 欧阳成甫, 等. 2001. 桂林市西部地区地质构造与成热关系. 桂林工学院学报, 21: 213-217
[40]  Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol, 92: 181-193
[41]  Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones. J Geol, 91: 611-627
[42]  Black L P, Gulson B L. 1978. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory, BMRJ. Aust Geol Geophys, 3: 227-232
[43]  Fedo C M, Eriksson K A, Krogstad E J. 1996. Geochemistry of shales from the Archean (~3.0 Ga) buhwa greenstone belt, Zimbabwe: Implications for provenance and source-area weathering. Geochim Cosmochim Acta, 60: 1751-1763
[44]  Mclennan S M, Taylor S R, Mcculloch M T, et al. 1990. Geochemical and Nd, Sr isotopic composition of deep sea turbidites: Crustal evolution and plate tectonic associations. Geochim Cosmochim Acta, 54: 2015-2050
[45]  Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717
[46]  Nesbitt H W, Young G M. 1984. Prediction of some weathering plotonic and volcanic rocks based upon thermodynamic considerations. Geochim Cosmochim Acta, 48: 1523-1534
[47]  Nesbitt H W, Young G M. 1989. Formation and diagenesis of weathering profiles. J Geol, 97: 129-147
[48]  Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratios. J Geol, 94: 635-650
[49]  Roser B P, Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant cuion analysis of major-element data. Chem Geol, 67: 119-139
[50]  Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell. 1-312
[51]  Wang L J, Griffin W L, Yu J H, et al. 2010a. Precambrian crustal evolution of the Yangtze Block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Res, 177: 131-144
[52]  Wang X L, Zhou J C, Griffin W L, et al. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. Precambrian Res, 159: 117-131
[53]  Wang Y J, Zhang F F, Fan W M, et al. 2010b. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics, 29: TC6020
[54]  Wang Y J, Fan W M, Guo F, et al. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for the lithospheric boundary between the Yangtze and Cathaysia Blocks. Inter Geol Rev, 45: 263-286
[55]  Wang Y J, Zhang Y H, Fan W M, et al. 2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt, South China Block. J Struct Geol, 27: 985-998
[56]  Winkler H G F. 1976. Petrogenesis of Metamorphic Rocks. 2nd ed. New York: Springer-Verlag. 334
[57]  Wronkiewicz D J, Condie K C. 1987. Geochemistry of Archaean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochim Cosmochim Acta, 51: 2401-2416

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133