全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

何家庄岩体的年龄和成因及其对南秦岭早三叠世构造演化的制约

, PP. 1874-1892

Keywords: 何家庄花岗闪长岩,锆石U-Pb同位素定年,岩石成因,构造背景,南秦岭构造演化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?何家庄岩体位于勉略带以北的南秦岭构造带北部,主体岩性为花岗闪长岩.LA-ICP-MS锆石U-Pb同位素定年结果揭示这些花岗闪长岩侵位于~248Ma.岩浆锆石的εHf(t)值在-4.8~8.8之间变化,Hf亏损地幔模式年龄(TDM)为537~1061Ma.何家庄岩体花岗闪长岩属于中钾到高钾钙碱性系列,具有与埃达克岩相似的地球化学特征.所有样品均表现为高的SiO2(66.6%~70.0%),Al2O3(15.04%~16.10%),Na2O(3.74%~4.33%)含量和Mg#(54.2~61.7)值,高的Sr(627~751ppm),Cr(55~373ppm)和Ni(17.2~182ppm)含量,低的Y(5.42~8.41ppm)和Yb(0.59~0.74ppm)含量,轻重稀土强烈分异((La/Yb)N=18.9~34.0),但重稀土相对平坦,明显的正Eu异常(δEu=1.10~2.22),富集大离子亲石元素,亏损Nb,Ta,P和Ti.岩石成因研究表明这些花岗闪长岩形成于岛弧环境下俯冲洋壳残片和沉积物构成的混合源的部分熔融,其熔体受到了地幔楔物质的污染.何家庄岩体年龄及岩石成因证明勉略洋壳俯冲从~248Ma之前就已经开始,并且南秦岭地区在早三叠世仍处于洋壳俯冲动力学背景.

References

[1]  赖绍聪, 秦江峰. 2010a. 南秦岭勉略缝合带蛇绿岩与火山岩. 北京: 科学出版社. 257
[2]  赖绍聪, 张国伟, 董云鹏, 等. 2003. 秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布. 中国科学D辑: 地球科学, 33: 1174-1183
[3]  熊小林, 韩江伟, 吴金花. 2007. 变质玄武岩体系相平衡及矿物-熔体微量元素分配: 限定TTG/埃达克岩形成条件和大陆壳生长模型. 地学前缘, 14: 149-158
[4]  熊小林, 刘星成, 朱志敏, 等. 2010. 华北埃达克质岩与克拉通破坏: 实验岩石学和地球化学依据. 中国科学: 地球科学, 41: 654-667
[5]  闫全人, 王宗起, 陈隽璐, 等. 2007. 北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义. 地质学报, 81: 489-502
[6]  严阵, 等. 1985. 陕西省花岗岩. 西安: 西安交通大学出版社. 321
[7]  闫臻, 王宗起, 陈隽璐, 等. 2009. 北秦岭武关地区丹凤群斜长角闪岩地球化学特征、锆石SHRIMP 测年及其构造意义. 地质学报, 83: 1633-1646
[8]  杨恺, 刘树文, 李秋根, 等. 2009. 秦岭柞水岩体和东江口岩体的锆石U-Pb年代学及其意义. 北京大学学报(自然科学版), 83: 841-847
[9]  杨朋涛, 刘树文, 李秋根, 等. 2012. 南秦岭铁瓦殿岩体的成岩时代及地质意义. 地质学报, 86: 1525-1540
[10]  张成立, 张国伟, 晏云翔, 等. 2005. 南秦岭勉略带北光头山花岗岩体群的成因及其构造意义. 岩石学报, 21: 711-720
[11]  张成立, 王涛, 王晓霞. 2008. 秦岭造山带早中生代花岗岩成因及其构造环境. 高校地质学报. 14: 304-316
[12]  Chung S L, Liu D Y, Ji J, et al. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024
[13]  Defant M J, Drummond M S. 1990. Derivation of some modern arc Magmas by melting of young subducted lithosphere. Nature, 347: 662-665
[14]  DePaolo D J. 1981. Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett, 53: 189-202
[15]  Didier J, Barbarin B. 1991. Enclaves and Granite Petrology: Developments in Petrology. Amsteydam: Elsevier Science Pub. 625
[16]  Dong Y P, Zhang G W, Neubauer F, et al. 2011a. Tectonic evolution of the Qinling Orogen, China: Review and synthesis. J Asian Earth Sci, 41: 213-237
[17]  Dong Y P, Liu X M, Santosh M, et al. 2011b. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U-Pb geochronology and geochemistry of Mafic intrusions in the Hannan Massif. Precambrian Res, 189: 69-90
[18]  Dong Y P, Zhang G W, Hauzenberger C, et al. 2011c. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122: 39-56
[19]  Dong Y P, Liu X M, Zhang G W, et al. 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling Orogen, China. J Asian Earth Sci, 47: 123-142
[20]  Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and assessment of the in fluence of rutile on the trace element characteristics of subduction zone Magmas. Geochim Cosmochim Acta, 64: 933-938
[21]  Foley S, Tiepolo M, Riccardo V. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837-840
[22]  Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China Craton. Nature, 432: 892-897
[23]  Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic Mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 64: 133-147
[24]  Hermann J, Spandler C. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717-740
[25]  Hoskin P, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, eds. Zircon. Rev Mineral Geochem, 53: 27-62
[26]  Jiang Y H, Jin G D, Liao S Y, et al. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117: 183-197
[27]  Kepezhinskas P, McDemott F, Defant M J, et al. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 61: 577-600
[28]  Lai S C, Zhang G W. 1996. Geochemical features of ophiolites in Mianxian-Lueyang suture zone, Qinling Orogenic Belt. Geol J China Univ, 7: l65-l72
[29]  Lai S C, Zhang G W, Li S Z. 2004. Ophiolites from the Mianlue suture in the Southern Qinling and their relationship with eastern Paleotethys evolution. Acta Geol Sin, 78: 107-117
[30]  Lai, S C, Qin, J F, Chen L. 2008. Geochemistry of ophiolites from the Mian-Lue Suture Zone: Implications for the tectonic evolution of the Qinling Orogen, Central China. Int Geol Rev, 50: 650-664
[31]  Liu S W, Pan Y M, Xie Q L, et al. 2004. Archean geodynamics in the Central Zone, North China Craton: Constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutaishan complexes. Precambrian Res. 130: 229-249
[32]  Martin H, Smithies R H, Moyen J F, et al. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crust evolution. Lithos, 79: 1-24
[33]  Maury R C, Sajona F G, Pubellier M, et al. 1996. Fusion de la cro?te océqniaue dans les zones de subduction/collision récentes: L''exemple de Mindanao (Philippines). Bull Soc Geol Fr, 167: 579-595
[34]  Meng Q R, Zhang G W. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27: 123-126
[35]  Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323: 183-196
[36]  Moyen J F. 2009. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos, 112: 556-574
[37]  Pearce J A, Harris N B, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 25: 956-983
[38]  Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The cordillera blanca batholith, Peru. J Petrol, 37: 1491-1521
[39]  Prouteau G, Scaillet B, Pichavant M, et al. 2001. Evidence for Mantle metaso Matism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197-200
[40]  Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res, 51: 1-25
[41]  Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891-931
[42]  Rapp R P, Shimizu N, Nor Man M D, et al. 1999. Reaction between slab-derived melts and peridotite in the Mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335-356
[43]  Rollinson H R. 1993. Using Geological Data: Evalution, Presentation, Interpretation. London: Person Education Limited. 284
[44]  Schiano P, Monzier M, Eissen J P, et al. 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol, 160: 297-312
[45]  Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett, 182: 115-125
[46]  Soderlund U, Patchett P J, Vervoort J D, et al. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope syste Matics of Precambrian Mafic intrusions. Earth Planet Sci Lett, 219: 311-324
[47]  Yang P T, Liu S W, Li Q G, et al. 2012. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the south Qinling belt, Central China: Constraints on petrogenesis and geodynamic processes. J Asian Earth Sci, 61: 166-186
[48]  Yuan H L, Gao S, Liu X M, et al. 2004. Precise U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma Mass spectrometry. Geostandards Geoanalyt Res, 28: 353-370
[49]  Yuan H L, Gao S, Dai M N, et al. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chem Geol, 247: 100-117
[50]  Zhang F, Liu S W, Li Q G, et al. 2011. Re-Os and U-Pb geochronology of the erlihe Pb-Zn deposit, Qinling orogenic belt, central China, and constraints on its deposit genesis. Acta Geol Sin-Engl Ed, 85: 673-682
[51]  Zhang F, Liu S W, Chen X, et al. 2012. Xiba granitic pluton the in Qinling orogenic belt, central China: Its Petrogenesis and tectonic implications. Acta Geol Sin-Engl Ed, 86: 1128-1142
[52]  陈义兵, 张国伟, 鲁如魁, 等. 2010. 北秦岭祁连结合区大草滩群碎屑锆石U-Pb年代学研究. 地质学报, 84: 947-962
[53]  第五春荣, 孙勇, 袁洪林等. 2008. 河南登封地区嵩山石英岩碎屑锆石U-Pb 年代学、Hf 同位素组成及其地质意义. 科学通报, 53: 1923-1934
[54]  董增产, 王洪亮, 郭彩莲, 等. 2009. 北秦岭西段奥陶纪红花铺岩体岩石地球化学特征及地质意义. 岩石矿物学杂志, 28: 109-117
[55]  姜春发, 朱志直, 孔凡宗. 1979. 留凤关复理石. 地质学报, 3: 203-220
[56]  金维浚, 张旗, 何登发, 等. 2005. 西秦岭埃达克岩的SHRIMP定年及其构造意义. 岩石学报, 21: 959-966
[57]  赖绍聪, 秦江峰. 2010b. 勉略缝合带三岔子辉绿岩墙锆石U-Pb年龄及Hf同位素组成—古特提斯洋壳俯冲的年代学证据. 地球科学与环境学报, 32: 27-33
[58]  李曙光, 孙卫东, 张国伟, 等. 1996. 南秦岭勉略构造带黑沟峡变质火山岩的年代学和地球化学——古生代洋盆及其闭合时代的证据. 中国科学D辑: 地球科学, 26: 223-230
[59]  李曙光, 侯振辉, 杨永成, 等. 2003. 南秦岭勉略构造带三岔子古岩浆弧的地球化学特征及形成时代. 中国科学D辑: 地球科学, 33: 1163-1173
[60]  凌文黎, 段瑞春, 柳小明, 等. 2010. 南秦岭武当山群碎屑锆石U-Pb年代学及其地质意义. 科学通报, 55: 1153-1161
[61]  刘树文, 杨朋涛, 李秋根, 等. 2011. 秦岭中段印支期花岗质岩浆作用与造山过程. 吉林大学学报, 41: 1928-1943
[62]  裴先治, 张国伟, 赖绍聪, 等. 2002. 西秦岭南缘勉略构造带主要地质特征. 地质通报, 32: 486-494
[63]  秦江峰, 赖绍聪. 2011. 秦岭造山带晚三叠世花岗岩成因及深部动力学. 北京: 科学出版社. 267
[64]  孙卫东, 李曙光, Chen Y D, 等. 2000. 南秦岭花岗岩锆石U-Pb年龄及其地质意义. 地球化学, 29: 209-216
[65]  王洪亮, 何世平, 陈隽璐, 等. 2006. 北秦岭西段红花铺俯冲型侵入体LA-ICPMS定年及其地质意义. 现代地质, 20: 536-544
[66]  王娟, 李鑫, 赖绍聪, 等. 2008. 印支期南秦岭西茬河、五龙岩体成因及构造意义. 中国地质, 35: 207-216
[67]  王伟, 刘树文, 吴峰辉, 等. 2011. 陕南铜厂闪长岩体的成岩、成矿时代及其地质意义. 北京大学学报(自然科学版), 47: 91-102
[68]  王晓霞, 王涛, 卢欣祥, 等. 2003. 北秦岭老君山和秦岭梁环斑结构花岗岩及构造环境—一种可能的造山带型环斑花岗岩. 岩石学报, 19: 650-660
[69]  吴峰辉, 刘树文, 李秋根, 等. 2009. 西秦岭光头山花岗岩锆石U-Pb年代学及其地质意义. 北京大学学报(自然科学版), 45: 811-818
[70]  吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49: 1589-1604
[71]  张本仁, 高山, 张宏飞, 等. 2002. 秦岭造山带地球化学. 北京: 科学出版社. 188
[72]  张帆, 刘树文, 李秋根, 等. 2009. 秦岭西坝花岗岩LA-ICP-MS锆石U-Pb年代学及其地质意义. 北京大学学报(自然科学版), 83: 833-840
[73]  张国伟, 张本仁, 袁学诚, 等. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社. 855
[74]  张宏飞, 靳兰兰, 张利, 等. 2005. 西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制. 中国科学D辑: 地球科学, 35: 914-926
[75]  张宗清, 张国伟, 刘敦一, 等. 2006. 秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学. 北京: 地质出版社. 348
[76]  赵振华, 熊小林, 王强, 等. 2008. 铌与钽的某些地球化学问题. 地球化学, 37: 304-320
[77]  Anderson T. 2002. Correlation of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 192: 59-79
[78]  Barbarin B. 2005. Mafic magmatic enclaves and Mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, orginal and relations with the hosts. Lithos, 80: 155-177
[79]  Barker F. 1979. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker F, ed. Trondhjemites, Dacites, and Related Rocks. Amsterdam: Elsevier. 1-12
[80]  Batchelor R A, Bowden P. 1985. Petrogenesis interpretation of granitoids rock series using multicationic parameters. Chem Geol, 48: 43-55
[81]  Blichert-Toft J, Albarede F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the Mantle-crust system. Earth Planet Sci Lett, 148: 243-258
[82]  Bonin B. 2004. Do coeval Mafic and felsic Magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crust, sources? A review. Lithos, 78: 1-24
[83]  Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol, 134: 33-51
[84]  Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb-Earth Sci, 83: 1-26
[85]  Chappell B W, White A J R, Williams I S, et al. 2000. Lachlan Fold Belt granites revisited: High- and low-temperature granites and their implications. Aust J Earth Sci, 47: 123-138
[86]  Li S Z, Kusky T M, Wang L, et al. 2007. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture. Gondwana Res, 12: 121-143
[87]  Liu S W, Pan Y M, Xie Q L, et al. 2005. Geochemistry of the Neoproterozoic Nanying granitic gneisses in the Fuping complex: Implications for the tectonic evolution of the Central zone, North China Craton. J Asian Earth Sci, 24: 643-658
[88]  Liu S W, Li Q G, Tian W, et al. 2011. Petrogenesis of Indosinian granitoids in middle-segment of South Qinling tectonic belt: Constraints from Sr-Nd isotopic syste Matics. Acta Geol Sin-Engl Ed, 85: 610-628
[89]  Liu X M, Gao S, Diwu C R. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. Am J Sci, 308: 421-468
[90]  Ludwig K R. 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec Pub. 1-70
[91]  Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc Magma, Mindanao, the Philippines. Earth Planet Sci Lett, 243: 581-593
[92]  Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geol Soc Am Bull, 101: 635-643
[93]  Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone. Contrib Mineral Petrol. 123: 263-281
[94]  Sun S S, McDonough W F. 1989. Chemical and isotopic syste Matics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. London Geol Soc Spec Pub, 42: 313-345
[95]  Sun W D, Li S G, Chen Y D, et al. 2002. Timing of synorogenic granotoids in the south Qinling, central China: Constraints on the evolution of the Qinling-Dabie Orogenic Belt. J Geol, 110: 457-468
[96]  Vernon R H. 1984. Micro-granitoid enclaves: Globules of hybrid Magma quenched in a plutonic environment. Nature, 304: 438-439
[97]  Wan Y S, Dong C Y, Liu D Y, et al. 2012. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: A review. Precambrian Res, 222-223: 265-289
[98]  Wang W, Liu S W, Bai X, et al. 2011. Geochemistry and zircon U-Pb-Hf isotopic syste Matics of the NeoarcheanYixian-Fuxin greenstone belt, northern Margin of the North China Craton: Implications for petrogenesis and tectonic setting. Gondwana Res, 20: 64-81
[99]  Wang W, Liu S W, Feng Y G, et al. 2012. Chronology, petrogenesis and tectonic setting of the Neoproterozoic Tongchang dioritic pluton at the northwestern margin of the Yangtze Block: Constraints from geochemistry and zircon U-Pb-Hf isotopic syste Matics. Gondwana Res, 22: 699-716
[100]  Wang X X, Wang T, Castro A, et al. 2011. Triassic granitoids of the Qinling orogen, central China, Genetic relationship of enclaves and rapakivi-textured rocks. Lithos, 126: 369-387
[101]  Wyllie P J, Wolf M B. 1993. Amphibolite dehydration-melting: Sorting out the solidus. In: Prichard, H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. London Geol Soc Spec Pub, 76: 405-416
[102]  Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 218: 339-359
[103]  Xu J F, Castillo P R, Li X H, et al. 2002a. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd Mantle component in the Indian Ocean. Earth Planet Sci Lett, 198: 323-337
[104]  Xu J F, Shinjio R, Defant M J, et al. 2002b. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 12: 1111-1114
[105]  Xu J F, Zhang B R, Han Y W. 2008. Geochemistry of the Mian-Lue ophiolites in the Qinling Mountains, central China: Constraints on the evolution of the Qinling orogenic belt and collision of the North and South China Cratons. J Asian Earth Sci, 32: 336-347
[106]  Yang J H, Wu F Y, Chung S L, et al. 2004. Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochim Cosmochim Acta, 68: 4469-4483
[107]  Yang P T, Liu S W, Li Q G, et al. 2011. Ages of the Laocheng granitoids and crustal growth in the South Qinling tectonic Do main, central China: Zircon U-Pb and Lu-Hf isotopic constraints. Acta Geol Sin-Engl Ed, 85: 801-816

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133