Chung S L, Liu D Y, Ji J, et al. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024
[13]
Defant M J, Drummond M S. 1990. Derivation of some modern arc Magmas by melting of young subducted lithosphere. Nature, 347: 662-665
[14]
DePaolo D J. 1981. Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett, 53: 189-202
[15]
Didier J, Barbarin B. 1991. Enclaves and Granite Petrology: Developments in Petrology. Amsteydam: Elsevier Science Pub. 625
[16]
Dong Y P, Zhang G W, Neubauer F, et al. 2011a. Tectonic evolution of the Qinling Orogen, China: Review and synthesis. J Asian Earth Sci, 41: 213-237
[17]
Dong Y P, Liu X M, Santosh M, et al. 2011b. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: Constrains from zircon U-Pb geochronology and geochemistry of Mafic intrusions in the Hannan Massif. Precambrian Res, 189: 69-90
[18]
Dong Y P, Zhang G W, Hauzenberger C, et al. 2011c. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos, 122: 39-56
[19]
Dong Y P, Liu X M, Zhang G W, et al. 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling Orogen, China. J Asian Earth Sci, 47: 123-142
[20]
Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and assessment of the in fluence of rutile on the trace element characteristics of subduction zone Magmas. Geochim Cosmochim Acta, 64: 933-938
[21]
Foley S, Tiepolo M, Riccardo V. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837-840
[22]
Gao S, Rudnick R L, Yuan H L, et al. 2004. Recycling lower continental crust in the North China Craton. Nature, 432: 892-897
[23]
Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic Mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 64: 133-147
[24]
Hermann J, Spandler C. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717-740
[25]
Hoskin P, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, eds. Zircon. Rev Mineral Geochem, 53: 27-62
[26]
Jiang Y H, Jin G D, Liao S Y, et al. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117: 183-197
[27]
Kepezhinskas P, McDemott F, Defant M J, et al. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 61: 577-600
[28]
Lai S C, Zhang G W. 1996. Geochemical features of ophiolites in Mianxian-Lueyang suture zone, Qinling Orogenic Belt. Geol J China Univ, 7: l65-l72
[29]
Lai S C, Zhang G W, Li S Z. 2004. Ophiolites from the Mianlue suture in the Southern Qinling and their relationship with eastern Paleotethys evolution. Acta Geol Sin, 78: 107-117
[30]
Lai, S C, Qin, J F, Chen L. 2008. Geochemistry of ophiolites from the Mian-Lue Suture Zone: Implications for the tectonic evolution of the Qinling Orogen, Central China. Int Geol Rev, 50: 650-664
[31]
Liu S W, Pan Y M, Xie Q L, et al. 2004. Archean geodynamics in the Central Zone, North China Craton: Constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutaishan complexes. Precambrian Res. 130: 229-249
[32]
Martin H, Smithies R H, Moyen J F, et al. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crust evolution. Lithos, 79: 1-24
[33]
Maury R C, Sajona F G, Pubellier M, et al. 1996. Fusion de la cro?te océqniaue dans les zones de subduction/collision récentes: L''exemple de Mindanao (Philippines). Bull Soc Geol Fr, 167: 579-595
[34]
Meng Q R, Zhang G W. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27: 123-126
[35]
Meng Q R, Zhang G W. 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323: 183-196
[36]
Moyen J F. 2009. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos, 112: 556-574
[37]
Pearce J A, Harris N B, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 25: 956-983
[38]
Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The cordillera blanca batholith, Peru. J Petrol, 37: 1491-1521
[39]
Prouteau G, Scaillet B, Pichavant M, et al. 2001. Evidence for Mantle metaso Matism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197-200
[40]
Rapp R P, Watson E B, Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res, 51: 1-25
[41]
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891-931
[42]
Rapp R P, Shimizu N, Nor Man M D, et al. 1999. Reaction between slab-derived melts and peridotite in the Mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335-356
[43]
Rollinson H R. 1993. Using Geological Data: Evalution, Presentation, Interpretation. London: Person Education Limited. 284
[44]
Schiano P, Monzier M, Eissen J P, et al. 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol, 160: 297-312
[45]
Smithies R H. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett, 182: 115-125
[46]
Soderlund U, Patchett P J, Vervoort J D, et al. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope syste Matics of Precambrian Mafic intrusions. Earth Planet Sci Lett, 219: 311-324
[47]
Yang P T, Liu S W, Li Q G, et al. 2012. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the south Qinling belt, Central China: Constraints on petrogenesis and geodynamic processes. J Asian Earth Sci, 61: 166-186
[48]
Yuan H L, Gao S, Liu X M, et al. 2004. Precise U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma Mass spectrometry. Geostandards Geoanalyt Res, 28: 353-370
[49]
Yuan H L, Gao S, Dai M N, et al. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS. Chem Geol, 247: 100-117
[50]
Zhang F, Liu S W, Li Q G, et al. 2011. Re-Os and U-Pb geochronology of the erlihe Pb-Zn deposit, Qinling orogenic belt, central China, and constraints on its deposit genesis. Acta Geol Sin-Engl Ed, 85: 673-682
[51]
Zhang F, Liu S W, Chen X, et al. 2012. Xiba granitic pluton the in Qinling orogenic belt, central China: Its Petrogenesis and tectonic implications. Acta Geol Sin-Engl Ed, 86: 1128-1142
Anderson T. 2002. Correlation of common lead in U-Pb analyses that do not report 204Pb. Chem Geol, 192: 59-79
[78]
Barbarin B. 2005. Mafic magmatic enclaves and Mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, orginal and relations with the hosts. Lithos, 80: 155-177
[79]
Barker F. 1979. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker F, ed. Trondhjemites, Dacites, and Related Rocks. Amsterdam: Elsevier. 1-12
[80]
Batchelor R A, Bowden P. 1985. Petrogenesis interpretation of granitoids rock series using multicationic parameters. Chem Geol, 48: 43-55
[81]
Blichert-Toft J, Albarede F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the Mantle-crust system. Earth Planet Sci Lett, 148: 243-258
[82]
Bonin B. 2004. Do coeval Mafic and felsic Magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crust, sources? A review. Lithos, 78: 1-24
[83]
Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol, 134: 33-51
[84]
Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb-Earth Sci, 83: 1-26
[85]
Chappell B W, White A J R, Williams I S, et al. 2000. Lachlan Fold Belt granites revisited: High- and low-temperature granites and their implications. Aust J Earth Sci, 47: 123-138
[86]
Li S Z, Kusky T M, Wang L, et al. 2007. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture. Gondwana Res, 12: 121-143
[87]
Liu S W, Pan Y M, Xie Q L, et al. 2005. Geochemistry of the Neoproterozoic Nanying granitic gneisses in the Fuping complex: Implications for the tectonic evolution of the Central zone, North China Craton. J Asian Earth Sci, 24: 643-658
[88]
Liu S W, Li Q G, Tian W, et al. 2011. Petrogenesis of Indosinian granitoids in middle-segment of South Qinling tectonic belt: Constraints from Sr-Nd isotopic syste Matics. Acta Geol Sin-Engl Ed, 85: 610-628
[89]
Liu X M, Gao S, Diwu C R. 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies. Am J Sci, 308: 421-468
[90]
Ludwig K R. 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Spec Pub. 1-70
[91]
Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites without slab melting: High pressure differentiation of island arc Magma, Mindanao, the Philippines. Earth Planet Sci Lett, 243: 581-593
[92]
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geol Soc Am Bull, 101: 635-643
[93]
Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Austral Volcanic Zone. Contrib Mineral Petrol. 123: 263-281
[94]
Sun S S, McDonough W F. 1989. Chemical and isotopic syste Matics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. London Geol Soc Spec Pub, 42: 313-345
[95]
Sun W D, Li S G, Chen Y D, et al. 2002. Timing of synorogenic granotoids in the south Qinling, central China: Constraints on the evolution of the Qinling-Dabie Orogenic Belt. J Geol, 110: 457-468
[96]
Vernon R H. 1984. Micro-granitoid enclaves: Globules of hybrid Magma quenched in a plutonic environment. Nature, 304: 438-439
[97]
Wan Y S, Dong C Y, Liu D Y, et al. 2012. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: A review. Precambrian Res, 222-223: 265-289
[98]
Wang W, Liu S W, Bai X, et al. 2011. Geochemistry and zircon U-Pb-Hf isotopic syste Matics of the NeoarcheanYixian-Fuxin greenstone belt, northern Margin of the North China Craton: Implications for petrogenesis and tectonic setting. Gondwana Res, 20: 64-81
[99]
Wang W, Liu S W, Feng Y G, et al. 2012. Chronology, petrogenesis and tectonic setting of the Neoproterozoic Tongchang dioritic pluton at the northwestern margin of the Yangtze Block: Constraints from geochemistry and zircon U-Pb-Hf isotopic syste Matics. Gondwana Res, 22: 699-716
[100]
Wang X X, Wang T, Castro A, et al. 2011. Triassic granitoids of the Qinling orogen, central China, Genetic relationship of enclaves and rapakivi-textured rocks. Lithos, 126: 369-387
[101]
Wyllie P J, Wolf M B. 1993. Amphibolite dehydration-melting: Sorting out the solidus. In: Prichard, H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. London Geol Soc Spec Pub, 76: 405-416
[102]
Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 218: 339-359
[103]
Xu J F, Castillo P R, Li X H, et al. 2002a. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd Mantle component in the Indian Ocean. Earth Planet Sci Lett, 198: 323-337
[104]
Xu J F, Shinjio R, Defant M J, et al. 2002b. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 12: 1111-1114
[105]
Xu J F, Zhang B R, Han Y W. 2008. Geochemistry of the Mian-Lue ophiolites in the Qinling Mountains, central China: Constraints on the evolution of the Qinling orogenic belt and collision of the North and South China Cratons. J Asian Earth Sci, 32: 336-347
[106]
Yang J H, Wu F Y, Chung S L, et al. 2004. Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochim Cosmochim Acta, 68: 4469-4483
[107]
Yang P T, Liu S W, Li Q G, et al. 2011. Ages of the Laocheng granitoids and crustal growth in the South Qinling tectonic Do main, central China: Zircon U-Pb and Lu-Hf isotopic constraints. Acta Geol Sin-Engl Ed, 85: 801-816