全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

“快流形”湿斜压Ertel-Rossby不变量的导出及其在台风中的应用

, PP. 1788-1796

Keywords: 湿Ertel-Rossby不变量,守恒,台风

Full-Text   Cite this paper   Add to My Lib

Abstract:

?位涡因在绝热无摩擦大气中具有守恒性而被当作一个较好的示踪物广泛的应用.然而位涡本身,对于大尺度“慢流形”更为有效.因此,需要寻找另外的守恒的不变量来描述速度和气压场等快速变化的强天气过程,比如增长期和成熟的热带气旋.本文将湿大气中的焓和熵引入绝对运动方程来消除气压梯度项,并利用Weber变换和Ertel形式的连续方程,推导了湿大气中的斜压Ertel-Rossby不变量,并证明了其守恒性.推得的湿斜压Ertel-Rossby不变量的表达式除了包含传统的位涡项,它还包括气压梯度、位能和动能梯度项等能反映“快流形”特征的因子,以及干Ertel-Rossby不变量所没有的湿度因子,因此能更完善地描述湿过程中强天气现象快速变化的动力学特征.通过个例分析,与湿位涡和干大气中的Ertel-Rossby不变量相比,这个守恒的不变量对于台风这类真实湿大气中快速变化的强天气过程是一个较好的诊断分析工具,能表征几个共存台风组成的多台风系统的移动和强度变化.湿Ertel-Rossby不变量在真实湿大气中有较为广泛的应用前景.

References

[1]  李英, 段旭. 2000. 湿位涡在云南冰雹天气分析中的应用. 应用气象学报, 11: 242-248
[2]  刘还珠, 张绍晴. 1996. 湿位涡与锋面强降水天气的三维结构. 应用气象学报, 7: 275-284
[3]  寿绍文, 李耀辉, 范可. 2001. 暴雨中尺度气旋发展的等熵面位涡分析. 气象学报, 59: 560-568
[4]  吴国雄, 蔡雅萍, 唐晓菁. 1995. 湿位涡和倾斜涡度发展. 气象学报, 53: 387-405
[5]  Cao Z, Cho H. 1995. Generation of moist vorticity in extratropical cyclones. J Atmos Sci, 52: 3263-3281
[6]  Cao Z H, Zhang D L. 2005. Sensitivity of cyclone tracks to the initial moisture distribution: A moist potential vorticity perspective. Adv Atmos Sci, 22: 807-830
[7]  Cho H, Cao Z. 1998. Generation of moist vorticity in extratropical cyclones. Part II: Sensitivity to moisture distribution. J Atmos Sci, 55: 595-610
[8]  Davis C A, Emanuel K A. 1991. Potential vorticity diagnostics of cyclogensis. Mon Weather Rev, 119: 1929-1953
[9]  Ertel H. 1942. Ein neuer hydrodynamischer wirbelsatz. Meteorol Z Braunschweigs, 6: 277-281
[10]  Ertel H. 1960. Relacion entre la derivada individual y una cierta divergencia espacial en hidrodinamica. Gerlands Beitr Geophys, 69: 357-361
[11]  Ertel H, Rossby C G. 1949. A new conservation-theorem of hydrodynamics. Pure Appl Geophys, 14: 189-193
[12]  Gao S T, Cui X P, Zhou Y S, et al. 2005. A modeling study of moist and dynamic vorticity vectors associated with 2D tropical convection. J Geophys Res, 110: D17104
[13]  Gao S T, Lei T, Zhou Y S. 2002. Moist potential vorticity anomaly with heat and mass forcings in torrential rain system. Chin Phys Lett, 19: 878-880
[14]  Gao S T, Li X F, Tao W K, et al. 2007. Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation. J Geophys Res, 112: D01105
[15]  Hertenstein R F, Schubert W H. 1991. Potential vorticity anomalies associated with squall lines. Mon Weather Rev, 119: 1663-1672
[16]  Hoskins B J, Berrisford P. 1988. A potential vorticity perspective of the storm of 15-16 October 1987. Mon Weather Rev, 43: 122-129
[17]  Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significations of isentropic potential-vorticity maps. Q J R Meteorol Soc, 111: 877-946
[18]  Montgomery M T, Farrell B F. 1993. Tropical cyclone formation. J Atmos Sci, 50: 285-310
[19]  Robinson W A. 1989. On the structure of potential vorticity in baroclinic instability. Tellus Ser A-Dyn Meteorol Oceanol, 41: 275-284
[20]  Rossby C G. 1936. Dynamics of steady ocean currents in the light of experimental fluid mechanics. Papers Phys Oceanography and Meteorology, 5: 1-43
[21]  Shapiro M A. 1974. A multiple structured frontal zone-jet stream system as revealed by meteorologically instrumented aircraft. Mon Weather Rev, 102: 244-253
[22]  Thorpe A J. 1985. Diagnosis of balanced vortex structure using potential vorticity. J Atmos Sci, 42: 397-406
[23]  Thorpe A J. 1990. Frontogenesis at the boundary between air masses of different potential vorticity. Q J R Meteorol Soc, 116: 561-572
[24]  Xu Q. 1992. Formation and evolution of frontal rainbands and geostrophic potential vorticity anomalies. J Atmos Sci, 49: 629-648
[25]  Zdunkowski W, Bott A. 2003. Dynamics of the Atmosphere: A Course in Theoretical Meteorology. Cambridge: Cambridge University Press. 717

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133