全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

陆地表层系统模拟和观测的不确定性及其控制

, PP. 1735-1742

Keywords: 不确定性,数据同化,尺度,可观测性,可预报性,模型,遥感

Full-Text   Cite this paper   Add to My Lib

Abstract:

?不确定性是定量认识陆地表层系统的最大挑战之一.本文讨论了陆地表层系统中不确定性的来源及减小和控制不确定性的可能途径.从模型模拟的角度,不确定性的首要来源是影响陆地表层的参数、状态变量和近地表大气状态等边界条件的高度异质性.从观测的角度,我们首先用代表性误差的概念统一了由尺度代表性所引起的误差.代表性误差也主要来源于空间异质性,对于定点观测,它指将模型单元的模型状态映射到某一观测在其所代表性空间上的观测值时的误差,对于遥感观测,它是将地表变量映射到遥感原始观测的误差.从控制和减小系统不确定性的角度论证了模型和观测互补的重要性,提出应以随机的观点对待复杂的陆地表层系统;并通过对两种现代数据同化方法的介绍,说明数据同化是如何通过最大限度地融合模型和观测信息,来处理和控制不确定性,从而增强系统的可预报性和可观测性的.我们认为,新一代模型应描述动力学系统的统计分布,而观测应捕捉空间异质性,度量观测的代表性误差.

References

[1]  李新, 摆玉龙. 2010. 顺序数据同化的Bayes滤波框架. 地球科学进展, 25: 515-522
[2]  钱学森. 1991. 谈地理科学的内容及研究方法. 地理学报, 46: 257-265
[3]  钱学森. 1957. 工程控制论. 北京: 科学出版社
[4]  杨金忠, 蔡树英, 黄冠华, 等. 2000. 多孔介质中水分及溶质运移的随机理论. 北京: 科学出版社
[5]  Beven K. 2006. Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. Hydrol Process, 9: 507-525
[6]  Jarvis N J, Zavattaro L, Rajkai K, et al. 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma, 108: 1-17
[7]  Kabat P, Hutjes R W A, Feddes R A. 1997. The scaling characteristics of soil parameters: From plot scale heterogeneity to subgrid parameterization. J Hydrol, 190: 363-396
[8]  Li X W, Strahler A H, Friedl M A. 1999. A conceptual model for effective directional emissivity from nonisothermal surfaces. IEEE Trans Geosci Remote Sensing, 37: 2508-2517
[9]  Li X W, Wang J D, Strahler A H. 2000. Scale effects and scaling-up by geometric-optical model. Sci China Ser E-Eng Mater Sci, 43(Suppl): 17-22
[10]  Li X, Huang C L, Che T, et al. 2007. Development of a Chinese land data assimilation system: Its progress and prospects. Prog Nat Sci, 17: 881-892
[11]  National Research Council (NRC): Committee on Scientific Accomplishments of Earth Observations from Space. 2008. Earth Observations from Space: The First 50 Years of Scientific Achievements. Washington DC: National Academies Press
[12]  National Research Council (NRC): Panel on Model-Assimilated Data Sets for Atmospheric and Oceanic Research. 1991. Four Dimensional Model Assimilation of Data: A Strategy for the Earth System Sciences. Washington DC: National Academies Press
[13]  Neuman S P, Xue L, Ye M, et al. 2012. Bayesian analysis of data-worth considering model and parameter uncertainties. Adv Water Resour, 36: 75-85
[14]  Richards L A. 1931. Capillary conduction of liquids through porous mediums. J Appl Phys, 1: 318-333
[15]  Sellers P J, Randall D A, Collatz G J, et al. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J Clim, 9: 676-705
[16]  Sposito G. 2008. Scale Dependence and Scale Invariance in Hydrology. Cambridge: Cambridge University Press
[17]  Sun N, Yeh W W. 2007. Development of objective-oriented groundwater models: 1. Robust parameter identification. Water Resour Res, 43: W02420, doi: 10.1029/2006WR004887
[18]  Talagrand O. 1997. Assimilation of observations, an introduction. J Meteorol Soc Jpn, 75(1B): 191-209
[19]  Wiener N. 1948. Cybernetics: Or Control and Communication in the Animal and the Machine. Oxford: John Wiley
[20]  Wheatcraft S W, Tyler S W. 1988. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour Res, 24: 566-578
[21]  Young I M, Crawford J W. 2004. Interactions and self-organization in the soil-microbe complex. Science, 304: 1634-1637
[22]  Zeng X B, Decker M. 2009. Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table. J Hydrometeorol, 10: 308-319

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133