全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用接收函数研究渭河地堑及其周边地壳结构

, PP. 1651-1658

Keywords: 渭河地堑,接收函数,泊松比,地壳结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用接收函数方法对横跨秦岭造山带、渭河地堑及鄂尔多斯块体的15个地震观测台站下方的地壳结构进行研究分析,结果表明三种不同类型(造山带型、拉张盆地型和稳定克拉通型)的构造单元的地壳结构和物质组成存在明显的差异.秦岭北缘平均地壳厚度为37.8km,泊松比为0.247,相对偏低的泊松比表明地壳物质长英质组分增加.鄂尔多斯块体南缘平均地壳厚度为39.2km,泊松比为0.265,偏高的泊松比与鄂尔多斯下方古老的铁镁质结晶基底以及浅部沉积有关.通过接收函数正演计算表明低速的、厚度较大的松散沉积层对Mohorovi?i?不连续面(Moho)的震相具有较大影响,是渭河地堑内部台站的接收函数Moho转换震相不清楚的主要原因.S波速度结构反演结果表明渭河地堑上覆松散沉积层,其厚度约为4~8km,该沉积层使得位于渭河地堑内台站的接收函数Moho震相复杂.另外渭河地堑下方中下地壳位置存在一高速区域,该高速体可能与渭河断裂系统的活动有关.

References

[1]  丁韫玉, 狄秀玲, 袁志祥, 等. 2000. 渭河断陷地壳三维S波速度结构和Vp/Vs分布图像. 地球物理学报, 43: 194-202
[2]  范俊喜, 马瑾, 甘卫军. 2003. 鄂尔多斯地块运动的整体性与不同边界活动的交替性. 中国科学D辑: 地球科学, 33: 119-128
[3]  冯希杰, 李晓妮, 任隽, 等. 2008. 渭河断裂深、中、浅和近地表显示. 地震地质, 30: 264-272
[4]  嵇少丞, 王茜, 杨文采. 2009. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义. 地质学报, 83: 324-330
[5]  李多, 周仕勇, 陈永顺, 等. 2012. 鄂尔多斯地区上地幔岩石圈三维速度结构面波反演研究. 地球物理学报, 55: 1613-1623
[6]  李延兴, 张静华, 郭良迁, 等. 2005. 鄂尔多斯的逆时针旋转与动力学. 大地测量与地球动力学, 25: 50-56
[7]  刘春, 崇加军, 倪四道, 等. 2009. 利用远震接收函数反演陕西地震台站下方的地壳厚度. 地震地质, 31: 313-320
[8]  欧阳建平, 张本仁. 1996. 北秦岭微古陆形成与演化的地球化学证据. 中国科学D辑: 地球科学, 26: 42-48
[9]  任隽, 彭建兵, 王夫运, 等. 2012. 渭河盆地及邻区地壳深部结构特征研究. 地球物理学报, 55: 2939-2947
[10]  师亚芹, 冯希杰, 戴王强, 等. 2008. 渭河断裂西安段的展布及其结构特征. 地震学报, 30: 634-647
[11]  唐有彩, 冯永革, 陈永顺, 等. 2010. 山西断陷带地壳结构的接收函数研究. 地球物理学报, 53: 2102-2109
[12]  吴庆举, 田小波, 张乃铃, 等. 2003. 计算台站接收函数的最大熵谱反褶积方法. 地震学报, 25: 382-389
[13]  张成立, 王涛, 王晓霞. 2008. 秦岭造山带早中生代花岗岩成因及其构造环境. 高校地质学报, 14: 304-316
[14]  张国伟, 孟庆任, 于在平, 等. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学D辑: 地球科学, 26: 193-200
[15]  张复新, 杜孝华, 王伟涛, 等. 2004. 秦岭造山带及邻区中生代地质演化与成矿作用响应. 地质科学, 39: 486-495
[16]  张少泉, 武利均, 郭建明, 等. 1985. 中国西部地区门源-平凉-渭南地震测深剖面资料的分析解释. 地球物理学报, 29: 460-472
[17]  张岳桥, 廖昌珍. 2003. 晚中生代-新生代构造体制转换与鄂尔多斯盆地改造. 中国地质, 33: 28-40
[18]  Ammon C J, Randall G E, Zandt G. 1990. On the Nonuniqueness of Receiver Function Inversions. J Geophys Res, 95: 15303-15318. doi: 10.1029/JB095iB10p15303
[19]  Ammon C J. 1991. The isolation of receiver effects from teleseismic P waveforms. Bull Seism Soc Am, 81: 2504-2510
[20]  Christensen N I, Fountain D M. 1975. Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Geol Soc Am Bull, 86: 227-236
[21]  Eagar K C, Fouch M J, James D E, et al. 2011. Crustal structure beneath the High Lava Plains of eastern Oregon and surrounding regions from receiver function analysis. J Geophys Res, 116: B02313, doi: 10.1029/2010jb007795
[22]  Huang Z C, Xu M, Wang L S, et al. 2008. Shear wave splitting in the southern margin of the Ordos Block, north China. Geophys Res Lett, 35: L19301, doi: 10.1029/2008gl035188
[23]  Kennett B L N. 1983. Seismic Wave Propagation in Atratified Media. New York: Cambridge University Press
[24]  Langston C A. 1977a. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bull Seism Soc Am, 67: 1029-1050
[25]  Langston C A. 1977b. Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves. Bull Seism Soc Am, 67: 713-724
[26]  Langston C A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res, 84: 4749-4762, doi: 10.1029/JB084iB09p04749
[27]  Langston C A, Hammer J K. 2001. The vertical component P-wave receiver function. Bull Seism Soc Am, 91: 1805-1819
[28]  Mohsen A, Asch G, Mechie J, et al. 2011. Crustal structure of the Dead Sea Basin (DSB) from a receiver function analysis. Geophys J Int, 184: 463-476, doi: 10.1111/j.1365-246X.2010.04853.x
[29]  Owens T J, Zandt G, Taylor S R. 1984. Seismic evidence for an ancient rift beneath the cumberland plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms. J Geophys Res, 89: 7783-7795, doi: 10.1029/JB089iB09p07783
[30]  Pan S, Niu F. 2011. Large contrasts in crustal structure and composition between the Ordos Plateau and the NE Tibetan Plateau from receiver function analysis. Earth Planet Sci Lett, 303: 291-298, doi: 10.1016/j.epsl.2011.01.007
[31]  Randall G E. 1989. Efficient calculation of differential seismograms for lithospheric receiver functions. Geophys J Int, 99: 469-481
[32]  Sodoudi F, Yuan X, Kind R, et al. 2009. Evidence for a missing crustal root and a thin lithosphere beneath the Central Alborz by receiver function studies. Geophys J Int, 177: 733-742, doi: 10.1111/j.1365-246X.2009.04115.x
[33]  Tian X, Teng J, Zhang H, et al. 2011. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis. Phys Earth Planet Inter, 184: 186-193, doi: 10.1016/j.pepi.2010.11.007
[34]  Tian Y, Zhao D, Sun R, et al. 2009. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys Earth Planet Inter, 172: 169-182
[35]  Zhang Y Q, Vergely P, Mercier J. 1995. Active faulting in and along the Qinling Range (China) inferred from SPOT imagery analysis and extrusion tectonics of south China. Tectonophysics, 243: 69-95
[36]  Zhao D, Huang Z C, Umino N, et al. 2011a. Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw9.0). Geophys Res Lett, 38: L17308, doi: 10.1029/2011gl048408
[37]  Zhao D, Yu S, Ohtani E. 2011b. East Asia: Seismotectonics, magmatism and mantle dynamics. J Asian Earth Sci, 40: 689-709, doi: 10.1016/j.jseaes.2010.11.013
[38]  Zhao L, Zheng T. 2005. Seismic structure of the Bohai Bay Basin, northern China: Implications for basin evolution. Earth Planet Sci Lett, 231: 9-22, doi: 10.1016/j.epsl.2004.12.028
[39]  Zheng T, Zhao L, Chen L. 2005. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin. Phys Earth Planet Inter, 152: 129-143, doi: 10.1016/j.pepi.2005.06.011
[40]  Zhu L, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res, 105: 2969-2980, doi: 10.1029/1999jb900322

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133