全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原表层土壤湿度遥感反演及其空间分布和多年变化趋势分析

, PP. 1677-1690

Keywords: 青藏高原,土壤水分,被动微波,双通道算法,空间分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

?青藏高原地区高精度的长时间序列的土壤水分数据对亚洲季风和全球大气循环研究有着极大的影响,但目前青藏高原地区地面站点稀少,已严重影响青藏高原气候变化研究.本文基于双通道土壤水分反演算法和AMSR-E卫星数据反演青藏高原地区2003~2010年表层土壤水分,并分析青藏高原地区土壤水分空间分布的季节性变化及多年变化趋势的空间分布.与地面站点土壤水分比较,新算法反演的土壤水分产品精度在地面站点区域,优于AMSR-E官方产品.通过对青藏高原年平均土壤水分空间分布和月平均土壤水分空间分布的季节性变化进行分析,结果表明二者与青藏高原降雨分布和水汽输送路径一致.基于此产品对青藏地区的多年土壤水分变化趋势空间分布进行了分析,通过与同一时期青藏高原气象站点的降水量数据的变化趋势比较,发现土壤水分变化趋势和降水量的变化趋势在空间分布上比较吻合.

References

[1]  Jackson T J, Cosh M H, Bindlish R, et al. 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans Geosci Remote Sensing, 48: 4256-4272
[2]  Jackson T J, Bindlish R, Cosh M H, et al. 2012. Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the U.S. IEEE Trans Geosci Remote Sensing, 50: 1530-1543
[3]  Jin R, Li X, Che T. 2009. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature. Remote Sens Environ, 113: 2651-2660
[4]  Kerr Y H, Njoku E G. 1990. A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space. IEEE Trans Geosci Remote Sensing, 28: 384-393
[5]  Kirdiashev K P, Chukhlantsev A A, Shutko A M. 1979. Microwave radiation of the earth''s surface in the presence of vegetation cover. Radiotekhnika i Elektronika, 24: 256-264
[6]  Koike T, Njoku E, Jackson T J, et al. 2000. Soil moisture algorithm development and validation for the ADEOS-II/AMSR. Geoscience and Remote Sensing IEEE International Symposium. 1253-1255
[7]  Koike T. 2004. Coordinated enhanced observing period—An initial step for integrated global water cycle observation. World Meteorol Organ Bull, 53: 115-212
[8]  Lei W, Zhen L, Xin R. 2004. The effects of vegetation in soil moisture retrieval using microwave radiometer data. Geosci Rem Sens Symp P, 2799-2802
[9]  LeVine D M, Karam M A. 1996. Dependence of attenuation in a vegetation canopy on frequency and plant water content. IEEE Trans Geosci Remote Sensing, 34: 1090-1096
[10]  Li L, Njoku E G, Im E, et al. 2004. A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans Geosci Remote Sensing, 42: 380-390
[11]  Maetzler C. 2000. Microwave emission from covered surfaces: Zero order versus multiple scattering. Radiative Transfer Models for Microwave Radiometry. European Commission
[12]  McCabe M F, Gao H, Wood E F. 2005. Evaluation of AMSR-E-derived soil moisture retrievals using ground-based and PSR airborne data during SMEX02. J Hydrometeorol, 6: 864-877
[13]  Milly P C D, Dunne K A. 1994. Sensitivity of the global water cycle to the water-holding capacity of land. J Clim, 7: 506-526
[14]  Mo T, Choudhury B J, Schmugge T J, et al. 1982. A model for microwave emission from vegetation-covered fields. J Geophys Res, 87: 1229-1237
[15]  Mo T, Schmugge T J. 1987. A parameterization of the effect of surface roughness on microwave emission. IEEE Trans Geosci Remote Sensing, 25: 481-486
[16]  Mo T, Wang J R, Schmugge T J. 1988. Estimation of surface-roughness parameters from dual-frequency measurements of radar backscattering coefficients. IEEE Trans Geosci Remote Sensing, 26: 574-579
[17]  Njoku E G, Entekhabi D. 1996. Passive microwave remote sensing of soil moisture. J Hydrol, 184: 101-129
[18]  Njoku E G, Li L. 1999. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz. IEEE Trans Geosci Remote Sensing, 37: 79-93
[19]  Njoku E G, Chan S K. 2006. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens Environ, 100: 190-199
[20]  Owe M, de Jeu R, Walker J. 2001a. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sensing, 39: 1643-1654
[21]  Owe M, van de Griend A A. 2001b. On the relationship between thermodynamic surface temperature and high-frequency (37 GHz) vertically polarized brightness temperature under semi-arid conditions. Int J Remote Sens, 22: 3521-3532
[22]  Paloscia S, Macelloni G, Santi E, et al. 2001. A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites. IEEE Trans Geosci Remote Sensing, 39: 1655-1661
[23]  Pampaloni P, Paloscia S. 1986. Microwave emission and plant water content: A comparison between field measurements and theory. IEEE Trans Geosci Remote Sensing, 24: 900-905
[24]  Panciera R, Walker J P, Merlin O. 2009. Improved understanding of soil surface roughness parameterization for l-band passive microwave soil moisture retrieval. IEEE Trans Geosci Remote Sensing, 6: 625-629
[25]  Polcher J. 1995. Sensitivity of tropical convection to land-surface processes. J Atmos Sci, 52: 3143-3161
[26]  Schmugge T J. 1980. Effect of texture on microwave emission from soils. IEEE Trans Geosci Remote Sensing, 18: 353-361
[27]  Schmugge T J, Kustas W P, Ritchie J C, et al. 2002. Remote sensing in hydrology. Adv Water Resour, 25: 1367-1385
[28]  Shi J C, Jiang L M, Zhang L X, et al. 2005. A parameterized multifrequency-polarization surface emission model. IEEE Trans Geosci Remote Sensing, 43: 2831-2841
[29]  Shi J C, Jiang L M, Zhang L X, et al. 2006. Physically based estimation of bare-surface soil moisture with the passive radiometers. IEEE Trans Geosci Remote Sensing, 44: 3145-3153
[30]  Ulaby F T, Moore R K, Fung A K. 1986. Microwave Remote Sensing: Active and Passive, Vol. III, From Theory to Applications. London: Artech House
[31]  Wang J R, Choudhury B J. 1981. Remote sensing of soil moisture content over bare field at 1.4 GHz frequency. J Geophys Res, 86: 5277-5282
[32]  Wang J R, Oneill P E, Jackson T J, et al. 1983. Multifrequency measurements of the effects of soil moisture, soil texture, and surface roughness. IEEE Trans Geosci Remote Sensing, 21: 44-51
[33]  Wigneron J P, Laguerre L, Kerr Y H. 2001. A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans Geosci Remote Sensing, 39: 1697-1707
[34]  Yang K, Ye B S, Zhou D G, et al. 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change, 109: 517-534
[35]  Zhang Z J, Sun G Q. 2003. Model investigation of the effect of vegetation on passive microwave soil moisture retrieval. Microwave Remote Sensing Atmosph Environment III, 4894: 140-149
[36]  马耀明, 姚檀栋, 王介民. 2006. 青藏高原能量和水循环试验研究—GAME/Tibet与CAMP/Tibet研究进展. 高原气象, 25: 344-351
[37]  孙鸿烈, 郑度. 1996. 青藏高原的形成演化. 上海: 上海科学技术出版社
[38]  Tetsuo N, 陈隆勋. 2000. Water budget analysis over the Tibetan Plateau during the northern summer in 1994, 见: 陶诗言, 陈联寿, 徐祥德, 主编. 第二次青藏高原大气科学实验研究进展(一). 北京: 气象出版社
[39]  张镱锂, 李炳元, 郑度. 2002. 论青藏高原范围与面积. 地理研究, 21: 1-8
[40]  章基嘉, 朱抱真, 朱富康. 1988. 青藏高原气象学进展: 青藏高原气象科学实验(1979)和研究. 北京: 科学出版社
[41]  郑度, 张荣祖, 杨勤业. 1979. 试论青藏高原的自然地带. 地理学报, 34: 1-11
[42]  郑度, 杨勤业, 刘燕华. 1985. 中国的青藏高原. 北京: 科学出版社
[43]  中国科学院青藏高原综合科学考察队. 1984. 青藏气候. 青藏高原科学考察丛书. 北京: 科学出版社
[44]  Balsamo G, Viterbo P, Beljaars A, et al. 2009. A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J Hydrometeorol, 10: 623-643
[45]  Basharinov A, Shutko A. 1975. Simulation studies of the SHF radiation of soils under moist conditions, NASA Tech. Translation, TT F-16
[46]  Chen Y Y, Yang K, Tang W J, et al. 2012. Parameterizing soil organic carbon''s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Sci China Earth Sci, 55: 1001-1011
[47]  Choudhury B J, Schmugge T J, Chang A, et al. 1979. Effect of surface roughness on the microwave emission from soils. J Geophys Res, 84: 5699-5706
[48]  de Jeu R A M, Owe M. 2003. Further validation of a new methodology for surface moisture and vegetation optical depth retrieval. Int J Remote Sens, 24: 4559-4578
[49]  de Rosnay P, Drusch M, Boone A, et al. 2009. AMMA land surface model intercomparison experiment coupled to the community microwave emission model: ALMIP-MEM. J Geophys Res, 114, doi: 10.1029/2008JD010724
[50]  Drusch M, Holmes T, de Rosnay P, et al. 2009. Comparing ERA-40-based l-band brightness temperatures with skylab observations: A calibration/validation study using the community microwave emission model. J Hydrometeorol, 10: 213-226
[51]  Du J Y. 2012. A method to improve satellite soil moisture retrievals based on Fourier analysis. Geophys Res Lett, 39, doi: 10.1029/2012GL052435
[52]  Holmes T R H, de Jeu R A M, Owe M, et al. 2009. Land surface temperature from Ka band (37 GHz) passive microwave observations. J Geophys Res, 114, doi: 10.1029/2008jd010257
[53]  Jackson T J, Schmugge T J, Wang J R. 1982. Passive microwave sensing of soil moisture under vegetation canopies. Water Resour Res, 18: 1137-1142
[54]  Jackson T J, Schmugge T J. 1991. Vegetation effects on the microwave emission of soils. Remote Sens Environ, 36: 203-212
[55]  Jackson T J. 1993. III. Measuring surface soil moisture using passive microwave remote sensing. Hydrol Process, 7: 139-152
[56]  Jackson T J, Levine D M, Swift C T, et al. 1995. Large-area mapping of soil-moisture using the estar passive microwave radiometer in Washita92. Remote Sens Environ, 54: 27-37
[57]  Jackson T J, Le Vine D M, Hsu A Y, et al. 1999. Soil moisture mapping at regional scales using microwave radiometry: The southern great plains hydrology experiment. IEEE Trans Geosci Remote Sensing, 37: 2136-2151

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133