全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

重庆芙蓉洞土壤带Mg和Sr元素特征及其环境意义

, PP. 1667-1676

Keywords: 芙蓉洞,土壤渗透水,Ca,Mg和Sr元素比值

Full-Text   Cite this paper   Add to My Lib

Abstract:

?通过在2010年对重庆武隆芙蓉洞上覆土壤带的定点监测,收集土壤渗透水,结合当地气温、降水量、土壤地球化学组成和土壤粒度组成,探讨气候条件和土壤层对渗透水中Ca,Mg和Sr元素浓度以及Mg/Ca,Sr/Ca和Mg/Sr比值的影响.数据显示土壤渗透水量可以快速反映地表降水量的变化,冬季和春季时(旱季)土壤渗透水在土壤中滞留时间延长是导致Ca,Mg和Sr浓度在4月出现高值的主要因素.土壤渗透水中Mg/Ca比值随着土壤渗透水滞留时间的延长和温度升高而升高,而Sr/Ca比值与降水量和气温的关系不明显.植物生长活动对Ca和Mg元素的吸收强度大于对Sr元素的吸收,并且Mg的溶蚀能力相对于Sr更易于响应温度的升高,由此导致Mg/Ca与Sr/Ca比值之间呈现反相关关系.冬春旱季时土壤渗透水在土壤中滞留时间的延长导致了Mg/Sr比值在4月出现高值;而Mg/Sr比值在7月和8月出现高值则是因为在温度升高的情形下渗透水对Mg的溶蚀相对于Sr更强.

References

[1]  陈伟海, 朱德浩, 黄保健, 等. 2006. 重庆武隆喀斯特景观特征与世界自然遗产价值研究. 北京: 地质出版社
[2]  杜金洲, 董文明, 丁国柱, 等. 1996. 放射性锶和铯在石灰性土壤上的吸着和解吸. 核化学与放射化学, 19: 239-242
[3]  李俊云, 李红春, 刘子琦, 等. 2006. 贵州中西部洞穴水系与碳酸钙沉积物的Mg/Sr比值和地球化学特征. 中国岩溶, 25: 177-186
[4]  李爽, 倪师军, 张成江, 等. 2007. 锶在土壤中的吸附动力学. 核化学与放射化学, 29: 90-95
[5]  李廷勇, 李红春, 李俊云, 等. 2008. 重庆芙蓉洞洞穴沉积物δ13C, δ18O特征及意义. 地质论评, 54: 712-720
[6]  李廷勇. 2007. 重庆地区石笋环境信息影响因素及末次冰期以来气候变化的初步研究. 博士学位论文. 重庆: 西南大学. 23-30
[7]  刘英俊, 曹励明, 李兆麟, 等. 1984. 元素地球化学. 北京: 科学出版社
[8]  鲁如坤. 土壤农业化学分析方法. 1999. 北京: 中国农业科技出版社
[9]  罗涵先,《中国农业年鉴》编辑委员会. 1982. 我国土壤颗粒分级标准. 北京: 中国农业出版社
[10]  吕贻忠, 李保国. 2006. 土壤学. 北京: 中国农业出版社
[11]  马志邦, 李红春. 2002. 距今3 ka来京东地区的古温度变化: 石笋Mg/Sr记录. 科学通报, 47: 1829-1834
[12]  王云, 魏复盛, 杨国治, 等. 1995. 土壤环境元素化学. 北京: 中国环境科学出版社
[13]  向晓晶, 李廷勇, 王建力,等. 2011. 重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响. 中国岩溶, 30: 193-199
[14]  衣成城, 李廷勇, 李俊云, 等. 2011. 芙蓉洞洞穴滴水离子浓度和元素比值变化特征及其环境意义. 中国岩溶, 30: 200-208
[15]  袁道先, 蔡桂鸿. 1988. 岩溶环境学. 重庆: 重庆出版社
[16]  赵振华. 1997. 微量元素地球化学原理. 北京: 科学出版社
[17]  朱学稳. 1994. 芙蓉洞的次生化学沉积物. 中国岩溶, 13: 357-368
[18]  Atkinson T C. 1977. Carbon dioxide in the atmosphere of the unsaturated zone: An important control of groundwater hardness in limestones. J Hydrol, 35: 111-123
[19]  Baker A, Barnes W L, Smart P L. 1997. Variations in the discharge and organic matter content of stalagmite drip waters in lower cave, Bristol. Hydrol Process, 11: 541-555
[20]  Baker A, Genty D, Fairchild I J. 2000. Hydrological characterization of stalagmite drip water at Grotte de Villarss, Dordogne, by the analysis of inorganic species and luminescent organic matter. Hydrol Earth Syst Sci, 4: 439-449
[21]  Banner J L, Musgrove M, Asmerom Y, et al. 1996. High-resolution temporal record of Holocene ground-water chemistry: Tracing links between climate and hydrology. Geology, 24: 1049-1053
[22]  Banner J L. 1995. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 42: 805-824
[23]  Borsato A, Frisia S, Fairchild I J, et al. 2007. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: Implications for incorporation of environmentally significant species. Geochim Cosmochim Acta, 71: 1494-1512
[24]  Fairchild I J, Borsato A, Tooth A F, et al. 2000. Controls on trace element Sr-Mg compositions of carbonate cave waters: Implications for speleothem climatic records. Chem Geol, 166: 255-269
[25]  Fairchild I J, Smith C L, Baker A, et al. 2006. Modification and preservation of environmental signals in speleothems. Earth-Sci Rev, 75: 105-153
[26]  Fairchild I J, Tooth A F, Huang Y, et al. 1996. Spatial and temporal variations in water chemistry in currently active caves: A precursor to interpretations of past climate. In: Bottrell S H, ed. Proceedings of the Fourth International Symposium on the Geochemistry of the Earth''s Surface. Ilkley, Yorkshire. 229-233
[27]  Fairchild I J, Treble P C. 2009. Trace elements in speleothems as recorders of environmental change. Quat Sci Rev, 28: 449-468
[28]  Frumkin A, Stein M. 2004. The Sahara-East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem. Earth Planet Sci Lett, 217: 451-464
[29]  Gabitov R I, Watson E B. 2006. Partitioning of strontium between calcite and fluid. Geochem Geophys Geosyst, 7: Q11004
[30]  Genty D, Baker A, Massault M, et al. 2001. Dead carbon is stalagmites: Carbonate bedrock palaeodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems. Geochim Cosmochim Acta, 65: 3443-3457
[31]  Goede A, McCulloch M, McDermott F, et al. 1998. Aeolizn contribution to strontium and strontium isotope variations in a Tasmanian speleothem. Chem Geol, 149: 37-50
[32]  Goede A, Vogel J C. 1991. Trace element variations and dating of a Late Pleistocene Tasmanian speleothems. Paleogeogr Paleoclimatol Paleoecol, 88: 121-131
[33]  Hellstrom J C, McCulloch M T. 2000. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth Planet Sci Lett, 179: 287-297
[34]  Huang Y, Fairchild I J. 2001. Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim Cosmochim Acta, 65: 47-62
[35]  Karmann I, Cruz F W, Viana Jr, et al. 2007. Climate influence on trace element geochemistry of water from Santana-Pérolas cave system, Brazil. Chem Geol, 244: 232-247
[36]  Katz A. 1973. The interaction of magnesium with calcite during crystal growth at 25-95℃ and one atmosphere. Geochim Cosmochim Acta, 36: 481-496
[37]  Li T Y, Li H C, Xiang X J, et al. 2012. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area. Sci China Earth Sci, 55: 685-694
[38]  Li T Y, Shen C C, Li H C, et al. 2011. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China. Geochim Cosmochim Acta, 75: 4140-4156
[39]  Lorens R B. 1981. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim Cosmochim Acta, 45: 553-561
[40]  McDermott F. 2004. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat Sci Rev, 23: 901-918
[41]  Morse J W, Bender M L. 1990. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems. Chem Geol, 82: 265-277
[42]  Musgrove M, Banner J L. 2004. Controls on the spatial and temporal variability of vadose dripwater geochemistry: Edwards Aquifer, central Texas. Geochim Cosmochim Acta, 68: 1007-1020
[43]  Paquette J, Reeder R J. 1995. Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim Cosmochim Acta, 59: 735-749
[44]  Pingitore N E, Eastman M P. 1986. The coprecipitation of Sr2+ with calcite at 25℃ and 1 atmosphere. Geochim Cosmochim Acta, 50: 2195-2203
[45]  Riechelmann S, Buhl D, Schr?der-Ritzrau A, et al. 2012. Hydrogeochemistry and fractionation pathways of Mg isotopes in a continental weathering system: Lessons from field experiments. Chem Geol, 300-301: 109-122
[46]  Roberts M S, Smart P, Baker A. 1998. Annual trace element variations in a Holocene speleothems. Earth Planet Sci Lett, 154: 237-246
[47]  Shurbaji A R M, Phillips F. 1995. A numerical model for the movement of H2O, H-2, O-18, and(HHO)-H-2 in the unsaturated zone. J Hydrol, 171: 125-142
[48]  Smart P L, Friederich H. 1986. Water movement and storage in the unsaturated zone of a maturely karstified aquifer, Mendip Hills, England. In: Proceedings of the Conference on Environmental Problems in Karst Terrains and their Solutions. National Wter wells Assoiation, Bowling Green, KY. 57-87
[49]  Treble P, Shelley J M G, Chappell J. 2003. Comparison of high-resolution subannual records of trace elements in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia. Earth Planet Sci Lett, 216: 141-153
[50]  Trudgill S T, Pickles A M, Smettem K R J, et al. 1983a. Soil-water residence time and solute uptake.1. Dye tracing and rainfall events. J Hydrol, 60: 257-279
[51]  Trudgill S T, Pickles A M, Smettem K R J. 1983b. Soil-water residence time and solute uptake. 2. Dye tracing and preferential flow predictions. J Hydrol, 60: 279-285
[52]  Wong C I, Banner J L, Musgrove M. 2011. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records. Geochim Cosmochim Acta, 75: 3514-3529
[53]  Zhou H Y, Feng Y X, Zhao J X, et al. 2009. Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment. Chem Geol, 268: 233-247

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133