全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南岭东段龙源坝印支和燕山期二云母花岗岩中白云母矿物化学特征及地质意义

, PP. 1659-1666

Keywords: 侵位深度,白云母,过铝质花岗岩,龙源坝岩体,南岭

Full-Text   Cite this paper   Add to My Lib

Abstract:

?研究花岗质岩石侵位的温度-压力条件是了解造山带深埋变质和抬升剥蚀的重要手段之一.华南广泛发育中生代花岗质岩石,大多数为过铝质岩石,其中印支期花岗岩尤其明显(>91%为过铝质花岗岩).这些过铝质花岗岩由于缺乏常用的确定压力矿物角闪石而难于计算其形成压力.白云母是一种特征的过铝质矿物,在合适的条件下也可以用于计算形成压力,因此可以用来限制过铝质花岗岩体的侵位深度.本文研究了南岭东段龙源坝杂岩体中印支期和燕山期二云母花岗岩中白云母特征,根据显微镜观察,龙源坝印支期和燕山期二云母花岗岩中的白云母都存在原生和次生白云母两种成因类型.但是,化学成分上印支期二云母花岗岩中的白云母具有高的Ti,Al,Mg和Na含量,相对低的Fe和Mn含量,化学成分判别都属于原生白云母.相反地,燕山期二云母花岗岩的白云母化学成分判别都属于次生白云母.根据龙源坝印支期二云母花岗岩和燕山期二云母花岗岩中白云母压力计计算结果以及岩体形成背景的讨论,化学成分判别为原生白云母计算的压力是合理的,而次生白云母计算的压力不合理.计算的龙源坝印支期二云母花岗岩形成压力平均为~5.9Kbar,对应的深度为~19km.印支期二云母花岗岩可能是在地壳挤压加厚构造背景下深部熔融,并侵入结晶形成.

References

[1]  Massonne H J, Schreyer W. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol, 96: 212-224
[2]  Miller C F, Bradfish L J. 1980. An inner Cordilleran belt of muscovite-bearing plutons. Geology, 8: 412-416
[3]  Miller C F, Stoddard E F, Bradfish L J, et al. 1981. Composition of plutonic muscovite: Genetic implications. Can Mineral, 19: 25-34
[4]  Monier G, Robert J L. 1986. Titanium in muscovites from two mica granites: Substitutional mechanism and partition with coexisting biotites. Neues Jahrb Mineral-Abhand, 153: 147-161
[5]  Roycroft, P. 1991. Magmatically zoned muscovite from the peraluminous two-mica granites of the Leinster batholith, southeast Ireland. Geology, 19: 437-440
[6]  Speer J A. 1984. Micas in igneous rocks. Rev Mineral, 13: 299-356
[7]  Velde B. 1965. Phengite micas: Synthesis, stability, and natural occurrence. Am J Sci, 263: 886-913
[8]  Watson E B, Harrison T M. 1983. Zircon saturation revisited-temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 64: 295-304
[9]  李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52: 981-991
[10]  孙涛, 陈培荣, 周新民, 等. 2002. 南岭东段强过铝质花岗岩中白云母研究. 地质论评, 48: 518-525
[11]  孙涛, 周新民, 陈培荣, 等. 2003. 南岭东段中生代强过铝花岗岩成因及其大地构造意义. 中国科学D辑: 地球科学, 33: 1209-1218
[12]  陶继华, 李武显, 李献华, 等. 2013. 赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究. 中国科学: 地球科学, 43: 760-778
[13]  汪相, 姚晓娟, 汪传胜. 2006. 猪蹄石花岗岩的特征矿物学: 补体花岗岩的成因研究. 中国科学D辑: 地球科学, 36: 342-350
[14]  张敏, 陈培荣, 黄国龙, 等. 2006. 南岭龙源坝复式岩体的地球化学特征研究. 铀矿地质, 22: 336-344
[15]  章邦桐, 吴俊奇, 凌洪飞, 等. 2010. 花岗岩中原生与次生白云母的鉴别特征及其地质意义——以赣南富城强过铝质花岗岩体为例. 岩石矿物学杂志, 29: 225-234
[16]  Althaus E, Karotke E, Nitsch K H, et al. 1970. An experimental re-examination of the upper stability limit of muscovite plus quartz. Neues Jahrb Mineral Monatsh, 7: 325-336
[17]  Anderson J L, Barth A P, Wooden J L, et al. 2008. Thermometers and thermobarometers in granitic systems. Rev Mineral Geochem. 69: 121-142
[18]  Anderson J L, Rowley M C. 1981. Synkinematic intrusion of peraluminous and associated metaluminous granitic magmas, Whipple Mountains, California. Can Mineral, 19: 83-101
[19]  Anderson J L. 1996. Status of thermobarometry in granitic batholiths. Trans R Soc Edinb-Earth Sci, 87: 125-138
[20]  Burnham C W. 1967. Hydrothermal fluid at the magmatic stage. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. New York: Holt, Rinehart and Winston. 34-74
[21]  Clarke D B. 1981. The mineralogy of peraluminous granites: A review. Can Mineral, 19: 3-17
[22]  Coney P J, Harms T A. 1984. Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology, 12: 550-554
[23]  du Bray E A. 1994. Compositions of micas in peraluminous granitoids of the eastern Arabian Shield-Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites. Contrib Mineral Petrol, 116: 381-397
[24]  Gomes M E P, Neiva A M R. 2000. Chemical zoning of muscovite from the Ervedosa granite, northern Portugal. Mineral Mag, 64: 347-358
[25]  Ham L J, Kontak D J. 1988. A textural and chemical study of white mica in the South Mountain Batholit, Nova Scotia: Primary versus secondary origin. Atlantic Geol, 24: 111-121
[26]  He Z Y, Xu X S, Niu Y L. 2010. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos, 119: 621-641
[27]  Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179-182
[28]  Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529-532
[29]  Velde B. 1967. Si+4 Content of natural phengites. Contrib Mineral Petrol, 14: 250-258
[30]  Villa I M, Ruggieri G, Puxeddu M. 1997. Petrological and geochronological discrimination of two white-mica generations in a granite cored from the Larderello-Travale geothermal field (Italy). Eur J Mineral, 9: 563-568
[31]  Zane A, Rizzo G. 1999. The compositional space of muscovite in granitic rocks. Can Mineral, 37: 1229-1238
[32]  Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29: 26-33

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133