Massonne H J, Schreyer W. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib Mineral Petrol, 96: 212-224
[2]
Miller C F, Bradfish L J. 1980. An inner Cordilleran belt of muscovite-bearing plutons. Geology, 8: 412-416
[3]
Miller C F, Stoddard E F, Bradfish L J, et al. 1981. Composition of plutonic muscovite: Genetic implications. Can Mineral, 19: 25-34
[4]
Monier G, Robert J L. 1986. Titanium in muscovites from two mica granites: Substitutional mechanism and partition with coexisting biotites. Neues Jahrb Mineral-Abhand, 153: 147-161
[5]
Roycroft, P. 1991. Magmatically zoned muscovite from the peraluminous two-mica granites of the Leinster batholith, southeast Ireland. Geology, 19: 437-440
[6]
Speer J A. 1984. Micas in igneous rocks. Rev Mineral, 13: 299-356
[7]
Velde B. 1965. Phengite micas: Synthesis, stability, and natural occurrence. Am J Sci, 263: 886-913
[8]
Watson E B, Harrison T M. 1983. Zircon saturation revisited-temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 64: 295-304
Althaus E, Karotke E, Nitsch K H, et al. 1970. An experimental re-examination of the upper stability limit of muscovite plus quartz. Neues Jahrb Mineral Monatsh, 7: 325-336
[17]
Anderson J L, Barth A P, Wooden J L, et al. 2008. Thermometers and thermobarometers in granitic systems. Rev Mineral Geochem. 69: 121-142
[18]
Anderson J L, Rowley M C. 1981. Synkinematic intrusion of peraluminous and associated metaluminous granitic magmas, Whipple Mountains, California. Can Mineral, 19: 83-101
[19]
Anderson J L. 1996. Status of thermobarometry in granitic batholiths. Trans R Soc Edinb-Earth Sci, 87: 125-138
[20]
Burnham C W. 1967. Hydrothermal fluid at the magmatic stage. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. New York: Holt, Rinehart and Winston. 34-74
[21]
Clarke D B. 1981. The mineralogy of peraluminous granites: A review. Can Mineral, 19: 3-17
[22]
Coney P J, Harms T A. 1984. Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology, 12: 550-554
[23]
du Bray E A. 1994. Compositions of micas in peraluminous granitoids of the eastern Arabian Shield-Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites. Contrib Mineral Petrol, 116: 381-397
[24]
Gomes M E P, Neiva A M R. 2000. Chemical zoning of muscovite from the Ervedosa granite, northern Portugal. Mineral Mag, 64: 347-358
[25]
Ham L J, Kontak D J. 1988. A textural and chemical study of white mica in the South Mountain Batholit, Nova Scotia: Primary versus secondary origin. Atlantic Geol, 24: 111-121
[26]
He Z Y, Xu X S, Niu Y L. 2010. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China. Lithos, 119: 621-641
[27]
Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179-182
[28]
Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529-532
[29]
Velde B. 1967. Si+4 Content of natural phengites. Contrib Mineral Petrol, 14: 250-258
[30]
Villa I M, Ruggieri G, Puxeddu M. 1997. Petrological and geochronological discrimination of two white-mica generations in a granite cored from the Larderello-Travale geothermal field (Italy). Eur J Mineral, 9: 563-568
[31]
Zane A, Rizzo G. 1999. The compositional space of muscovite in granitic rocks. Can Mineral, 37: 1229-1238
[32]
Zhou X M, Sun T, Shen W Z, et al. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29: 26-33