全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国大陆的活动断裂、地震灾害及其动力过程

, PP. 1607-1620

Keywords: 活动地块,大陆强震,地球动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

?中国是一个地震灾害严重的国家,强震主要发生在天山、青藏高原和华北地区,其他地区的7级以上破坏性强震相对较弱.天山的强震主要发生在山体两侧的前陆逆冲推覆带上,山体内部也发生构造变形并控制着一系列中强地震的发生.华北西部鄂尔多斯内部构造活动性微弱,周边的地震活动却十分强烈.华北平原的强震主要发生在平原内部的北北东走向隐伏断裂上,特别是这些北北东走向隐伏断裂与燕山南缘张家口-渤海断裂带的交汇部位是巨大地震的发生场所.青藏高原的活动断裂和强震发生均与海拔高度相关:逆冲断裂和逆冲型强震主要发生在高原周边的低海拔区,高海拔的高原内部则以拉张性质的南北向正断裂和共轭走滑断裂为主,走滑断裂发育在高原的不同海拔不同部位,但北部是左旋走滑运动,南部是右旋走滑运动.中国大陆的强震总体上具有分布广泛、西强东弱、动静交替和分块成带的特征,形成这种地震活动图像的原因是中国大陆的强震受控于活动地块的运动和变形.活动地块是被形成于晚新生代、至今强烈活动的构造带所分割和围限的地质单元,其内部相对稳定,具有相对统一的运动方式,主要构造变形和强震都发生在边界带上,有历史记载以来的全部8级强震和80%以上的7级以上强震都发生在活动地块边界带上.在板块挤压、板内地幔对流等动力作用下,大陆活动地块发生相对运动和变形,上地壳的刚性地块运动和非刚性连续变形都是深部黏塑性流动的地表响应,中国大陆的现今构造变形可以用耦合的地块运动和连续变形模式来描述,活动地块的运动和变形是“陆内变形”的重要方式之一.

References

[1]  张培震, 邓起东, 张国民, 等. 2003. 中国大陆强震活动与活动地块. 中国科学D辑: 地球科学, 33(增刊): 12-20
[2]  张培震. 2003. 天山及其前陆盆地的晚新生代构造变形. 科学通报, 48: 2499-2500
[3]  张培震, 邓起东, 徐锡伟, 等. 1994. 盲断裂、褶皱地震与新疆1906年玛纳斯地震. 地震地质, 16: 193-204
[4]  张先康, 李松林, 王夫运, 等. 2003. 青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异——深地震测深的结果. 地震地质, 25: 52-60
[5]  朱日祥, 陈凌, 吴福元, 等. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学: 地球科学, 41: 583-592
[6]  Abdrakhmatov K, Aldazhanov S, Hager B, et al. 1996. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature, 384: 450-453
[7]  Huang Z X, Su W, Peng Y J, et al. 2003. Rayleigh wave tomography of China and adjacent regions. J Geophys Res, 108: 2073, doi: 10.1029/ 2001JB001696
[8]  Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res, 112: B08416, doi: 10.1029/2005JB004120
[9]  Kato A, Obara K, Igarashi T, et al. 2012. Propagation of slow slip leading up to the 2011 Mw9.0 Tohoku-Oki earthquake. Science, 335: 705-708
[10]  Li C, van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 115: B07308, doi: 10.1029/2009JB006882
[11]  Li H, Fu X, van der Woerd J. 2008. Surface rupture associated with the Wenchuan earthquake and its oblique slip. Acta Geol Sin, 82: 1623-1643
[12]  Liu Z J, Zhang Z, Wen L, et al. 2009. Co-seismic ruptures of the 12 May 2008, Ms8.0 earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth Planet Sci Lett, 286: 355-370
[13]  Ma Z J, Chen Z L, Zhu Y Q, et al. 1984. The basic characteristics of the continental earthquakes. In: A Collection of the Papers of International Symposium on Continental Seismicity and Earthquake Prediction. Beijing: Seismological Press. 299-311
[14]  McCaffrey R. 2005. Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data. J Geophys Res, 110: B07401, doi: 10.1029/2004JB003307
[15]  Meade B J. 2007. Present-day kinematics at the India-Asia collision zone. Geology, 35: 81-84, doi: 10.1130/G22924A
[16]  Meyer B, Tapponnier P, Bourjot L, et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau. Geophys J Int, 135: 1-47
[17]  Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189: 419-426
[18]  Molnar P, Lyon-Caen H. 1989. Fault plane solution of earthquakes and active tectonics of the Tibetan Plateau and its margins. Geophys J Int, 99: 123-153
[19]  Molnar P, Gipson J M. 1996. A bound on the rheology of continental lithosphere using very long baseline interferometry: The velocity of South China with respect to Eurasia. J Geophys Res, 101: 545-553
[20]  Molnar P, Ghose S. 2000. Seismic moment of major earthquakes and the rate of shortening across the Tien Shan. Geophys Res Lett, 27: 2377- 2380
[21]  Scholz C H. 1990. The Mechanics of Earthquakes and Faulting. New York: Cambridge University Press
[22]  Scholz C H. 1998. Earthquakes and friction laws. Nature, 391: 36-42
[23]  Shen Z K, Zhao C K, Yin A, et al. 2000. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurement. J Geophys Res, 105: 5721-5734
[24]  陈立春, 王虎, 冉勇康, 等. 2010. 玉树Ms7.1级地震地表破裂与历史大地震. 科学通报, 55: 1200-1205
[25]  邓起东, 冯先岳, 张培震, 等. 2000. 天山活动构造. 北京: 地震出版社
[26]  邓起东, 张培震, 冉勇康, 等. 2002. 中国大陆活动构造基本特征. 中国科学D辑: 地球科学, 32: 1020-1030
[27]  丁国瑜. 1991. 活动亚板块、构造块体相对运动. 见: 丁国瑜, 主编. 中国岩石圈动力学概论. 北京: 地震出版社. 142-153
[28]  范俊喜, 马瑾, 刁桂苓. 2003. 由小震震源机制解得到的鄂尔多斯周边构造应力场. 地震地质, 25: 88-99
[29]  国家地震局鄂尔多斯活动断裂系课题组. 1988. 鄂尔多斯活动断裂系. 北京: 地震出版社. 225-253
[30]  国家地震局地质研究所, 宁夏回族自治区地震局. 1990. 海原活动断裂带. 北京: 地震出版社
[31]  韩竹军, 徐杰, 冉勇康, 等. 2003. 华北地区活动地块与强震活动. 中国科学D辑: 地球科学, 33(增刊): 108-118
[32]  李松林, 张先康, 张成科, 等. 2002. 玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究. 地球物理学报, 45: 210-217
[33]  M7专项工作组. 2012. 中国大陆大地震中-长期危险性研究. 北京: 地震出版社
[34]  马杏垣. 1989. 中国岩石圈动力学图. 北京: 地图出版社
[35]  王敏, 沈正康, 牛之俊, 等. 2003. 现今中国大陆地壳运动与活动块体模型. 中国科学D辑: 地球科学, 33(增刊): 21-32
[36]  王琪, 张培震, 牛之俊, 等. 2001. 中国大陆现今地壳运动和构造变形. 中国科学D辑: 地球科学, 31: 529-536
[37]  徐杰, 宋长青, 高战武, 等. 1999. 华北地区新生地震构造带和区域地震构造格局的初步研究. 见: 马宗晋, 杨主恩, 吴正文, 主编. 构造地质学-岩石圈动力学研究进展. 北京: 地震出版社. 252-257
[38]  许志琴, 李海兵, 杨经绥, 等. 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13: 1-17
[39]  许忠淮, 汪素云, 2000. 地震活动反映的青藏高原东北地区现代构造运动特征. 地震学报, 22: 472-481
[40]  张国民, 耿鲁明, 石耀霖. 1993. 中国大陆强震轮回活动的计算机研究. 中国地震, 9: 20-32
[41]  张国民, 张培震. 2000. “大陆强震机理与预测”中期学术进展. 中国基础科学, 10: 4-10
[42]  Armijo R, Tapponnier P, Mercier J L, et al. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications. J Geophys Res, 91: 13803-13972
[43]  Avouac J, Tapponnier P, Bai M, et al. 1993. Active faulting and folding in the northern Tien Shan and rotation of Tarim relative to Dzungarian and Kazakhstan. J Geophys Res, 98: 6755-6804
[44]  Avouac J. 2003. Moutain buiding, erosion, and the seismic cycle in the Nepal Himalaya. Adv Geophys, 46, doi: 10.1016/S0065-2687(03)46001-9
[45]  Bai D H, Unsworth M J, Meju M A, et al. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging. Nat Geosci, 3: 358-362
[46]  Bilham R. 2010. Lessons from the Haiti earthquake. Nature, 463: 878-879
[47]  Burchfiel B, Brown E, Deng Q, et al. 1999. Crustal shortening on the margins of the Tien Shan, Xinjiang, China. Int Geol Rev, 41: 665-700
[48]  Calais E, Vergnolle M, San''kov V, et al. 2003. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002): Implications for current kinematics of Asia. J Geophys Res, 108: 2501, doi: 10.1029/2002JB002373
[49]  Calais E, Dong L, Wang M, et al. 2006. Continental deformation in Asia from a combined GPS solution. Geophys Res Lett, 33: L24319, doi: 10.1029/2006GL028433
[50]  Chen W P, Nábelek J. 1988. Seismogenic strike-slip faulting and the development of the north China basin. Tectonics, 7: 975-989
[51]  Copley A, McKenzie D. 2007. Models of crustal flow in the India-Asia collision zone. Geophys J Int, 169: 683-698
[52]  Elliott J R, Walters R J, England P C, et al. 2010. Extension on the Tibetan Plateau: Recent normal faulting measured by InSAR and body wave seismology. Geophys J Int, 183: 503-535, doi: 10.1111/j.1365-246X.2010.04754.x
[53]  Simons M, Minson S E, Sladen A, et al. 2011. The 2011 Magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science, 332: 1421-1425
[54]  Taylor M, Peltzer G. 2006. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry. J Geophys Res, 111: B12402, doi: 10.1029/2005JB004014
[55]  Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere, 5: 199-214
[56]  Thatcher W. 2007. Microplate model for the present-day deformation of Tibet. J Geophys Res, 112: B01401, doi: 10.1029/2005JB004244
[57]  Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294: 574-577
[58]  Wei W B, Unsworth M, Jones A, et al. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies. Science, 292: 716-719
[59]  Xu X, Wen X, Yu G, et al. 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw7.9 Wenchuan earthquake, China. Geology, 37: 515-518
[60]  Ye H, Shedlock K M, Hellinger S J, et al. 1985. The North China basin: An example of a Cenozoic rifted intraplate basin. Tectonics, 4: 153-169
[61]  Zhang P, Shen Z, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from GPS data. Geology, 32: 809-812
[62]  Zhang P Z, Gan W J. 2008. Combined model of rigid-block motion with continuous deformation: Patterns of present-day deformation in continental China. Geol Soc Am Spec Pap, 444: 59-71, doi: 10.1130/2008.2444(04)
[63]  Zhang P Z, Wen X Z, Shen Z K, et al. 2010. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Ann Rev Earth Planet Sci, 38: 353-382
[64]  Zhang Z Q, McCaffrey R, Zhang P Z. 2013. Relative motion across the eastern Tibetan Plateau: Contributions from faulting, internal strain and rotation rates. Tectonophysics, 584: 240-256, doi: 10.1016/j.tecto.2012.08.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133