全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大地电磁各向异性模型解析解及其讨论

, PP. 1489-1498

Keywords: 大地电磁,各向异性,解析解,精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

?本文首先从一般大地电磁(Magnetotelluric,MT)各向异性介质的二阶偏微分方程组出发,通过简化各向异性介质的电导率张量,获得剖面各向异性及平面各向异性介质情形下求解MT响应的二阶偏微分方程组.然后在对角各向异性MT响应解析解基础上,通过电导率的变换得到剖面各向异性及平面各向异性介质的解析解.其次,以各向同性介质为例,讨论了解析解计算过程中积分限与积分步长的选取对计算精度的影响.最后计算了两种剖面各向异性及平面各向异性介质模型的MT响应,并对各向异性介质模型MT响应解析解的一些应用做了讨论.

References

[1]  1 Wannamaker P E. Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: Fundamental response characteristics and implications for physicochemical state. Surv Geophys, 2005, 26: 733-765
[2]  2 Marti A, Queralt P, Ledo J, et al. Dimensionality imprint of electrical anisotropy in magnetotelluric responses. Phys Earth Planet Inter, 2010, 182: 139-151
[3]  3 Simpson F. Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature, 2001, 412: 632-635
[4]  4 Simpson F. Intensity and direction of lattice-preferred orientation of olivine: Are electrical and seismic anisotropies of the Australian mantle reconcilable? Earth Planet Sci Lett, 2002, 203: 535-547
[5]  5 Leibecker J, Gatzemeier A, Honig M, et al. Evidence of electrical anisotropic structures in the lower crust and the upper mantle beneath the Rhenish Shield. Earth Planet Sci Lett, 2002, 202: 289-302
[6]  6 Bahr K, Simpson F. Electrical anisotropy below slow-and fast-moving plates: Paleoflow in the upper mantle? Science, 2002, 295: 1270
[7]  7 Maillet R. The fundamental equations of electrical prospecting. Geophysics, 1947, 12: 529-556
[8]  8 Postma G. Wave propagation in a stratified medium. Geophysics, 1955, 20: 780-806
[9]  9 秦林江, 杨长福. 大地电磁全张量响应的一维各向异性反演. 地球物理学报, 2012, 55: 693-701
[10]  10 Chetayev D N. The determination of anisotropic coefficient and the angle of inclination of homogeneous anisotropic medium, by measuring the impedance of natural electromagnetic field. Bull Acad Sci. USSR, Geophysics ser., English Transl., 1960, 4: 407-408
[11]  11 Mann J E. The importance of anisotropic conductivity in magnetotelluric interpretation. J Geophys Res, 1965, 70: 2940-2942
[12]  12 Sinha A. The magnetotelluric effect in an inhomogeneous and anisotropic earth. Geoexploration, 1969, 7: 9-28
[13]  13 Praus O, Petr V. Magnetotelluric calculations for interaction of polarized fields with anisotropic layered media. Can J Earth Sci, 1969, 6: 759-769
[14]  14 Negi J G, Saraf P D. Asthenospheric parameters of dipping plate regions by magnetotelluric investigations. Phys Earth Planet Inter, 1981, 25: 255-262
[15]  15 Pek J, Verner T. Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media. Geophys J Int, 1997, 128: 505-521
[16]  16 Weidelt P. 3-D Conductivity models: Implications of electrical anisotropy. In: Oristaglio M, Spies B, eds. Three-Dimensional Electromagnetics. Amsterdam: Elsevier, 1999. 119-137
[17]  17 Li Y. Numerische Modellierungen von elektromagnetischen Feldern in 2-und 3-dimensionalen anisotropen Leitf?higkeitsstrukturen der Erde nach der Methode der Finiten Elemente. Cuvillier, 2000
[18]  18 Wang T L, Fang S. 3-D electromagnetic anisotropy modeling using finite differences. Geophysics, 2001, 66: 1386-1398
[19]  19 Li Y G. A finite-element algorithm for electromagnetic induction in two-dimensional anisotropic conductivity structures. Geophys J Int, 2002, 148: 389-401
[20]  20 Yin C. Inherent nonuniqueness in magnetotelluric inversion for 1D anisotropic models. Geophysics, 2003, 68: 138-146
[21]  21 Pek J, Santos F A M. Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media. Comput Geosci, 2002, 28: 939-950
[22]  22 Pek J, Santos F A M. Magnetotelluric inversion for anisotropic conductivities in layered media. Phys Earth Planet Inter, 2006, 158: 139-158
[23]  23 林长佑, 武玉霞, 杨长福, 等. 水平层状对称各向异性介质的大地电磁资料反演. 地球物理学报, 1996, 39(增刊): 342-348
[24]  24 杨长福. 大地电磁二维对称各向异性介质的有限元数值模拟. 西北地震学报, 1997: 28-34
[25]  25 杨长福, 林长佑, 孙崇赤, 等. 二维对称各向异性介质大地电磁反演. 地震学报, 2005: 339-345
[26]  26 Reddy I K, Rankin D. Magnetotelluric response of laterally inhomogeneous and anisotropic media. Geophysics, 1975, 40: 1035-1045
[27]  27 Saraf P, Negi J. On multifrequency magneto telluric sounding over the Himalayan type colliding plate boundaries. Geophys J Roy Astron Soc, 1983, 74: 809-817
[28]  28 Singh R P. Effect of inclined anisotropic substratum on magnetotelluric response. Geophys Prospect, 1985, 33: 369-376
[29]  29 Saraf P D, Negi J G, Cerv V. Magnetotelluric response of a laterally inhomogeneous anisotropic inclusion. Phys Earth Planet Inter, 1986, 43: 196-198
[30]  30 Osella A M, Martinelli P. Magnetotelluric response of anisotropic 2-D structures. Geophysical J Int, 1993, 115: 819-828
[31]  31 Heise W, Pous J. Anomalous phases exceeding 90° in magnetotellurics anisotropic model studies and a field example. Geophys J Int, 2003, 155: 308-318
[32]  32 Heise W, Caldwell T, Bibby H, et al. Anisotropy and phase splits in magnetotellurics. Phys Earth Planet Inter, 2006, 158: 107-121
[33]  33 Negi J, Saraf P. Anisotropy in Geoelectromagnetism. Amsterdam: Elsevier, 1989
[34]  34 Gatzemeier A, Tommasi A. Flow and electrical anisotropy in the upper mantle: Finite-element models constraints on the effects of olivine crystal preferred orientation and microstructure. Phys Earth Planet Inter, 2006, 158: 92-106
[35]  35 Weaver J T, Lequang B V, Fischer G. A comparison of analytic and numerical results for a two-dimensional control model in electromagnetic induction. 1. B-polarization calculations. Geophys J Roy Astron Soc, 1985, 82: 263-277
[36]  36 O''Brien D P, Morrison H F. Electromagnetic fields in an N-layered anisotropic half-space. Geophysics, 1967, XXXII: 668-677
[37]  37 Reddy I K, Rankin D. Magnetotelluric measurements in central Alberta. Geophysics, 1971, 36: 739-753
[38]  38 Kong J A. Electromagnetic fields due to dipole antennas over stratifield anisotropic media. Geophysics, 1972, 37: 985-996
[39]  39 Qin L, Yang C, Chen K. Quasi-analytic solution of 2-D magnetotelluric fields on an axially anisotropic infinite fault. Geophys J Int, 2013, 192: 67-74
[40]  40 Weaver J T. The electromagnetic field within a discontinuous conductor with reference to geomagnetic micropulsations near a coastline. Can J Phys, 1963, 41: 484-495
[41]  41 Hobbs B A. Analytical solutions to global and local problems of electromagnetic induction in the Earth. Phys Earth Planet Inter, 1975, 10: 250-261
[42]  42 Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge: Cambridge University Press, 1992
[43]  43 D''erceville I, Kunetz G. The effect of a fault on the Earth''s natural electromagnetic field. Geophysics, 1962, 27: 651-665
[44]  44 Rankin D. The magneto-telluric effect on a dike. Geophysics, 1962, 27: 666-676
[45]  45 Simpson F, Bahr K. Practical Magnetotellurics. Cambridge: Cambridge University Press, 2005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133