全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

疾病传播输入输出流的时空特征分析——以北京SARS流行为例

, PP. 1499-1517

Keywords: 输入-输出流,SARS,北京市,传播网络,时空特征,控制措施

Full-Text   Cite this paper   Add to My Lib

Abstract:

?为更好揭示传染病流行的个体受感染-发病-就诊-康复的时空过程变化模式以及区域之间的信息流与物质流的传播网络结构特征,基于2002~2003年中国SARS病例数据,选取SARS流行的三个典型空间位置信息:工作单位或住址、发病地点以及报告单位,从感染个体和空间区域两个角度来探索病毒感染扩展的输入与输出传播机制,定义并探讨了北京市SARS传播输入-输出流(In-OutFlow)的概念与流行病学特征.采用空间统计分析方法和网络特征分析方法,探索了北京市外部输入-输出流的高风险时空热点以及网络结构特征,并对北京市内部输入-输出流传播网络的空间自相关性与异质性、时空演化规律以及网络结构特征进行了全面分析.结果表明:(1)外部输入流集中在山西和广东,而外部输出流较为分散,主要是广东以及山东等北部省份,且防控措施重点应分别是SARS爆发的早中期与初期;(2)内部输出病例在整体区域上存在显著正自相关性特征,高危人群集中在20~60岁的医务与民工等中青年人群;(3)市中心区的若干区县是SARS传播高风险热点区域,西北方位市郊是次级高风险区域,而东北方位市郊则相对安全;(4)在内部传播网络中各区县节点存在显著小世界特征且具有信息流和物质流的异质性特征,市郊通州区与昌平区是潜在的高风险热点区域,顺义区与怀柔区等节点承载了极低的物质流和信息流信息,是相对的低风险冷点区域.基于输入-输出流的探索与分析更有助于揭示SARS流行过程中的潜在时空演化特征与规律,可为应急决策与防控措施提供更有效的理论依据.

References

[1]  1 Dye C, Gay N. Epidemiology modeling the SARS epidemic. Science, 2003, 300: 1884-1885
[2]  2 石耀霖. SARS传染扩散的动力学随机模型. 科学通报, 2003, 48: 1373-1377
[3]  3 Jia N, Tsui L. Epidemic modelling using SARS as a case study. North Am Actuarial J, 2005, 9: 28-42
[4]  4 Anderson R M, Fraser C, Ghani A C, et al. Epidemiology transmission dynamics and control of SARS: The 2002-2003 epidemic. Philos Trans R Soc Lond B Biol Sci, 2004, 359: 1091-1105
[5]  5 Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science, 2003, 300: 1966-1970
[6]  6 Pang X, Zhu Z, Xu F, et al. Evaluation of control measures implemented in the severe acute respiratory syndrome outbreak in Beijing, 2003. JAMA, 2003, 290: 3215-3221
[7]  7 庞星火, 刘东磊, 龚晓红, 等. 北京市SARS患者密切接触者发病及其危险因素分析. 中华流行病学杂志, 2004, 25: 35-37
[8]  8 Fang L Q, de Vlas S J, Feng D, et al. Geographical spread of SARS in mainland China. Trop Med Int Health, 2009, 14(Suppl 1): 14- 20
[9]  9 Wang J F, Mcmichael A J, Meng B, et al. Spatial dynamics of an epidemic of severe acute respiratory syndrome in an urban area. Bull World Health Organ, 2006, 84: 965-968
[10]  10 Meng B, Wang J F, Liu J, et al. Understanding the spatial diffusion process of severe acute respiratory syndrome in Beijing. Public Health, 2005, 119: 1080-1087
[11]  11 曹志冬, 曾大军, 郑晓龙, 等. 北京市SARS流行的特征与时空传播规律. 中国科学: 地球科学, 2010, 40: 776-788
[12]  12 Wang J F, Christakos G, Han W G, et al. Data-driven exploration of ‘spatial pattern-time process-driving forces'' associations of SARS epidemic in Beijing, China. J Public Health (Oxf), 2008, 30: 234-244
[13]  13 龚建华, 孙战利, 李小文, 等. SARS疫情控制的模拟分析. 遥感学报, 2003, 7: 260-265
[14]  14 龚建华, 周洁萍, 徐珊, 等. SARS传播动力学模型及其多智能体模拟研究. 遥感学报. 2006, 10: 829-835
[15]  15 林国基, 贾珣, 欧阳颀. 用小世界网络模型研究SARS病毒的传播. 北京大学学报(医学版), 2003, 35(增刊): 66-69
[16]  16 Small M, Tse C K. Small world and scale free model of transmission of SARS. Int J Bifurcat Chaos, 2005, 15: 1745-1755
[17]  17 王劲峰, 孟斌, 郑晓瑛, 等. 北京市2003年SARS疫情的多维分布及其影响因素分析. 中华流行病学杂志, 2005, 26: 16-20
[18]  18 刘亚岚, 阎守邕, 李小文, 等. 中国内地人口流动空间规律研究及其在SARS控制宏观决策中的应用. 遥感学报, 2003, 7: 273-276
[19]  19 Jia N, Feng D, Fang L Q, et al. Case fatality of SARS in mainland China and associated risk factors. Trop Med Int Health, 2009, 14(Suppl 1): 21-27
[20]  20 Wu J, Xu F, Zhou W, et al. Risk factors for SARS among persons without known contact with SARS patients, Beijing, China. Emerg Infect Dis, 2004, 10: 210-216
[21]  21 Lau J T, Tsui H, Lau M, et al. SARS transmission, risk factors, and prevention in Hong Kong. Emerg Infect Dis, 2004, 10: 587-592
[22]  22 Tobler W. A computer movie simulating urban growth in the detroit region. Econ Geogr, 1970, 46: 234-240
[23]  23 李小文, 曹春香, 常超一. 地理学第一定律与时空邻近度的提出. 自然杂志, 2007, 29: 69-71
[24]  24 Moran P A. Notes on continuous stochastic phenomena. Biometrika, 1950, 37: 17-23
[25]  25 Geary R C. The contiguity ratio and statistical mapping. Incorp Statistician, 1954, 5: 115-145
[26]  26 Getis A, Ord J K. The analysis of spatial association by use of distance statistics. Geogr Anal, 1992, 24: 189-206
[27]  27 Anselin L. Local indicators of spatial association-LISA. Geogr Anal, 1995, 27: 93-115
[28]  28 Ord J K, Getis A. Local spatial autocorrelation statistics: Distributional issues and application. Geogr Anal, 1995, 27: 286-306
[29]  29 Anselin L. Spatial Analytical Perspectives on GIS. London: Taylor & Francis Ltd, 1996. 111-125
[30]  30 Levine N. CrimeStat: A spatial statistics program for the analysis of crime incident locations (version 3.3). Ned Levine & Associates, Houston, TX, and the National Institute of Justice, Washington, DC. 2010
[31]  31 Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int J Geogr Inf Sci, 2010, 24: 107-127
[32]  32 Watts D J, Strogatz S H. Collective dynamics of /''small-world/'' networks. Nature, 1998, 393: 440-442
[33]  33 Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509-512
[34]  34 Amaral L A, Scala A, Barthelemy M, et al. Classes of small-world networks. Proc Natl Acad Sci USA, 2000, 97: 11149-11152
[35]  35 Kulldorff M, Nagarwalla N. Spatial disease clusters: Detection and inference. Stat Med, 1995, 14: 799-810
[36]  36 Kulldorff M. A spatial scan statistic. Commun Statist Theory Methods, 1997, 26: 1481-1496
[37]  37 Kulldorff M, Heffernan R, Hartman J, et al. A space-time permutation scan statistic for disease outbreak detection. PLoS Med, 2005, 2: e59

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133