全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国东北半干旱区能量水分循环的同化模拟

, PP. 2768-2784

Keywords: WRF模式,资料同化,能量水分循环,东北半干旱区

Full-Text   Cite this paper   Add to My Lib

Abstract:

?使用地球观测系统的中分辨率成像光谱仪(EOS-MODIS)提供的归一化植被指数(NDVI)产品估算植被覆盖度和航天飞机雷达地形测绘任务(SRTM)制成的数字高程模型(DEM)数据遥感产品替换WRF模式默认的植被覆盖度和地形高度,并且利用WRF模式及其先进的三维变分同化系统(WRF-3DVar)循环同化东北半干旱区自动气象站近地面气象要素,对东北半干旱区的温度场、湿度场、风场和能量场的结构及其日变化特征进行了较为细致的模拟研究.通过4组数值模拟试验分别探讨了同化气象要素与改变模式地表参数引起的不同下垫面潜热、感热的分配关系和降水、土壤湿度变化引起的地表能量通量模拟效果,并利用通榆站、奈曼站、锦州站、和密云站2009年6~8月的通量观测资料与模拟结果对比检验.结果表明,WRF模式能够较好地模拟出东北半干旱区夏季的近地面温度、风向、净辐射、感热和潜热等要素的变化特征及日变化规律.同化试验(Case2)模拟的近地面气温、相对湿度、风速相比控制性试验(Case1)有所改善;陆面参数试验(Case3)和集合试验(Case4)改善了感热和地表热通量的模拟.WRF模式能较好地模拟出下垫面土壤湿度随时间变化的规律,集合试验(Case4)土壤湿度模拟结果与4个通量站观测值相比无太大差别,但降水的模拟有待改善.本研究利用卫星遥感资料改善模式下垫面陆面参数,利用气象资料同化改善近地面大气要素模拟精度,这是将各种不同空间和时间尺度的多源数据与数值模拟融合的有益尝试.此研究生成的东北地区资料同化数据集可用于气候变化、干旱监测等方面,对深入了解半干旱区气候的形成和维持机理具有重要的意义.

References

[1]  董俊玲, 韩志伟, 张仁健, 等. 2011. WRF模式对中国城市和半干旱地区气象要素的模拟检验和对比分析. 气象科学, 31: 484-492
[2]  符淙斌, 马柱国. 2008. 全球变化与区域干旱化. 大气科学, 32: 752-760
[3]  符淙斌, 温刚. 2002. 中国北方干旱化的几个问题. 气候与环境研究, 7:22-29
[4]  李新, 黄春林, 车涛, 等. 2007. 中国陆面数据同化系统研究的进展与前瞻. 自然科学进展, 17: 163-173
[5]  刘辉志, 董文杰, 符淙斌, 等. 2004. 半干旱地区吉林通榆"干旱化和有序人类活动"长期观测实验. 气候与环境研究, 9: 378-389
[6]  刘辉志, 涂钢, 董文杰, 等. 2006. 半干旱地区地气界面水汽和二氧化碳通量的日变化及季节变化. 大气科学, 30: 108-118
[7]  刘爽, 宫鹏. 2012. 2000~2010年中国地表植被绿度变化. 科学通报, 57: 1423-1434
[8]  刘伟, 高艳红, 冉有华, 等. 2007. 不同分辨率地形数据对黑河流域模拟结果的对比分析. 高原气象, 26: 525-531
[9]  马耀明, 王介民. 1997. HEIFE非均匀陆面上区域能量平衡研究. 气候与环境研究, 2: 293-301
[10]  曾剑, 张强. 2012b. 2008年7~9月中国北方不同下垫面晴空陆面过程特征差异. 气象学报, 70: 821-836
[11]  潘小多, 李新, 冉有华, 等. 2012. 下垫面对WRF模式模拟黑河流域区域气候精度影响研究. 高原气象, 31: 657-667
[12]  涂钢, 刘辉志, 董文杰, 等. 2006. 半干旱区退化草地地表能量收支. 气候与环境研究, 11: 723-732
[13]  文小航. 2011. 金塔绿洲戈壁非均匀下垫面能量平衡及其小气候效应的数值研究. 博士学位论文. 兰州: 中国科学院寒区旱区环境与工程研究所. 1-131
[14]  阎宇平, 王介民, Menenti M, 等. 2001. 黑河实验区非均匀地表能量通量的数值模拟. 高原气象, 20: 132-139
[15]  阳坤, 王介民. 2008. 一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法. 中国科学D辑: 地球科学, 38: 243-250
[16]  张强, 曾剑, 张立阳. 2012. 夏季风盛行期中国北方典型区域陆面水, 热过程特征研究. 中国科学: 地球科学, 42: 1385-1393
[17]  张强, 赵鸣. 1998. 干旱区绿洲与荒漠相互作用下陆面特征的数值模拟. 高原气象, 17: 336-346
[18]  曾剑, 张强. 2012a. 2008年夏季中国干旱-半干旱区陆面主要物理参数的平均特征. 高原气象, 31: 1539-1550
[19]  Barker D M, Huang W, Guo Y R, et al. 2004. A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon Weather Rev, 132: 897-914
[20]  Barrett D J, Renzullo L J. 2009. On the efficacy of combining thermal and microwave satellite data as observational constraints for root-zone soil moisture estimation. J Hydrometeorol, 10: 1109-1127
[21]  Case J L, Crosson W L, Kumar S V, et al. 2008. Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model. J Hydrometeorol, 9: 1249-1266
[22]  Chen F, Dudhia J. 2001a. Coupling an advanced land surface-hydrology model with the penn state-ncar MM5 modeling system. Part i: Model implementation and sensitivity. Mon Weather Rev, 129: 569-585
[23]  Chen F, Dudhia J. 2001b. Coupling an advanced land surface-hydrology model with the penn state-ncar MM5 modeling system. Part ii: Preliminary model validation. Mon Weather Rev, 129: 587-604
[24]  Chen F, Manning K W, LeMone M A, et al. 2007. Description and evaluation of the characteristics of the ncar high-resolution land data assimilation system. J Appl Meteorol Clim, 46: 694-713
[25]  Cheng T T, Han Z W, Zhang R J, et al. 2010. Black carbon in a continental semi-arid area of Northeast China and its possible sources of fire emission. J Geophys Res, 115: D23204, doi: 10.1029/2009JD13523
[26]  Chu P C, Lu S H, Chen Y C. 2005. A numerical modeling study on desert oasis self-supporting mechanisms. J Hydrol, 312: 256-276
[27]  Courtier P. 1997. Variational methods. J Meteorol Soc Jpn, 75: 211-218
[28]  Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 46: 3077-3107
[29]  Grell G A, Dudhia J, Stauffer D R. 1994. A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note. NCAR/TN-398+STR, doi: 10.5065/D60Z716B
[30]  Gu J F, Xiao Q N, Kuo Y H, et al. 2005. Assimilation and simulation of typhoon Rusa (2002) using the WRF system. Adv Atmos Sci, 22: 415-427
[31]  Gutman G, Ignatov A. 1998. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int J Remote Sens, 19: 1533-1543
[32]  Hanna S R, Yang R X. 2001. Evaluations of mesoscale models'' simulations of near-surface winds, temperature gradients, and mixing depths. J Appl Meteorol, 40: 1095-1104
[33]  Huang J P, Zhang W, Zuo J Q, et al. 2008. An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv Atmos Sci, 25: 906-921
[34]  Irmak A, Kamble B. 2009. Evapotranspiration data assimilation with genetic algorithms and SWAP model for on-demand irrigation. Irrigation Sci, 28: 101-112
[35]  Janjic Z I. 1990. The step-mountain coordinate: Physical package. Mon Weather Rev, 118: 1429-1443
[36]  Janjic Z I.1996. The surface layer in the NCEP Eta model. Eleventh Conference on Numerical Weather Prediction. 354-355
[37]  Janjic Z I. 2002. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the ncep meso model. NCEP Office Note. 61
[38]  Janjic Z I, Black T L, DiMego G. 1998. Contributions toward development of a future community mesoscale model (WRF). 16th Conference on Weather Analysis and Forecasting/Symposium on the Research Foci of the US Weather Research Program. 258-261
[39]  Kain J S, Fritsch J M. 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models Meter. Meteorol Monogr, 46: 165-170
[40]  Kumar S, Sekhar M, Bandyopadhyay S. 2009. Assimilation of remote sensing and hydrological data using adaptive filtering techniques for watershed modelling. Curr Sci India, 97: 1196-1202
[41]  Li F Q, Crow W T, Kustas W P. 2010. Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals. Adv Water Resour, 33: 201-214
[42]  Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model. J Clim Appl Meteorol, 22: 1065-1092
[43]  Lorenc A C. 1986. Analysis-methods for numerical weather prediction. Q J Roy Meteor Soc, 112: 1177-1194
[44]  Meng X H, Lu S H, Zhang T T, et al. 2009. Numerical simulations of the atmospheric and land conditions over the Jinta oasis in northwestern China with satellite-derived land surface parameters. J Geophys Res, 114: 100-120
[45]  Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res, 102: 16663-16682
[46]  Pan X D, Tian X J, Li X, et al. 2012. Assimilating Doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method. J Geophys Res, 117: D17113, doi: 10.1029/2012JD017684
[47]  Tanaka K, Ishikawa H, Hayashi T, et al. 2001. Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data. J Meteorol Soc Jpn, 79: 505-517
[48]  Wen X H, Lu S H, Jin J M. 2012. Integrating remote sensing data with WRF for improved simulations of oasis effects on local weather processes over an arid region in northwestern China. J Hydrometeorol, 13: 573-587
[49]  Xue M, Droegemeier K K, Wong V. 2000. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part i: Model dynamics and verification. Meteorol Atmos Phys, 75: 161-193
[50]  Yang K, Koike T, Kaihotsu I, et al. 2009. Validation of a dual-pass microwave land data assimilation system for estimating surface soil moisture in semiarid regions. J Hydrometeorol, 10: 780-793

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133