Butler I D, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulfide. Geochim Cosmochim Acta, 63: 247-275
[14]
Dong J, Zhang S H, Jiang G Q, et al. 2013.Greigite from carbonate concretions of the Ediacaran doushantuo formation in South China and its environmental implications. Precambrian Res, 225: 77-85
[15]
Goldhaber M B, Kaplan I R. 1974. The sulfur cycle. In: Goldberg E, ed. The Sea, 5. Chichester: Wiley. 569-655
[16]
Grimes S T, Brock F, Rickard D, et al. 2001. Understanding fossilization: Experimental pyritization of plants. Geology, 29: 123-126
[17]
Large D J, Sawtowicz Z, Spratt J. 1999. A cobaltite-framboidal pyrite association from the kupferschiefer: Possible implications for trace element behaviour during the earliest stages of diagenesis. Mineral Mag, 63: 353-361
[18]
Larrasoa?a J C, Roberts A P, Musgrave R J, et al. 2007. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet Sci Lett, 261: 350-366
[19]
Love L G. 1962. Biogenic primary sulphide of the Permian kupferschiefer and marl slate. Econ Geol, 57: 350-366
[20]
Love L G. 1957. Microorganisms and the presence of syngenetic pyrite. Quart J Geol Soc London, 113: 429-440
[21]
Luther G W. 1991. Pyrite synthesis via polysulfide compounds. Geochim Cosmochim Acta, 55: 2839-2849
[22]
Mann S, Nicholas H C Sparks, Frankel R B, et al. 1990. Biomineralization of ferromagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343: 258-261
[23]
Morse J W, Millero F J, Comwell J C, et al. 1987. The chemistry of the hydrogen sulfide and iron sulfide systemsin natural waters. Earth-Sci Rev, 24: 1-42
[24]
Ohfuji H, Rickard D. 2005. Experimental synthesis of framboids—A review. Earth-Sci Rev, 71: 147-170
[25]
Raiswell R. 1982. Pyrite texture, isotopic composition, and availabilityof Fe. Am J Sci, 282: 1244-1263
[26]
Reinholdsson M, Snowball I, Zillén L, et al. 2013. Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth Planet Sci Lett, 366: 137-150
[27]
Rickard D, Luther G W. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochim Cosmochim Acta, 61: 135-147
[28]
Wilkin R T, Barnes H L. 1997a. Formation processes of framboidal pyrite. Geochim Cosmochim Acta, 61: 323-339
[29]
Xu G, Zhou J. 2001. The Xinqiao Cu-S-Fe-Au deposit in the Tongling mineral district, China: Synorogenic remobilization of a stratiform sulfide deposit. Ore Geol Rev, 18: 77-94
Allan K. 2012. Minor element distribution in iron disulfides in coal: A geochemical review. Int J Coal Geol, 94: 32-43
[56]
Rickard D T. 1975. Kinetics and mechanism of pyrite formationat low temperatures. Am J Sci, 275: 636-652
[57]
Rickard D. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochim Cosmochim Acta, 61: 115-134
[58]
Ruppert L F, Minkin J A, Mc Gee J J, et al. 1992. An occurrence of arsenic-bearing pyrite in the Upper Freeport coal bed, west-central Pennsylvania. Energ Fuel, 6: 120-125
[59]
Rust G W. 1935. Colloidal primary copper ores at Cornwall mines, southeastern Missouri. J Geol, 43: 398-426
[60]
Schoonen M A A, Barnes H L. 1991a. Reactions formingpyrite and marcasite from solution: II. Via FeS precursors below 100°C. Geochim Cosmochim Acta, 55: 1505-1514
[61]
Schoonen M A A. 2004. Mechanisms of sedimentary pyrite formation. In: Amend J P, Edwards K R, Lyons T W, eds. Sulfur Biogeochemistry. Geol Soc Amer Spec Pap, 379: 117-134
[62]
Schoonen M A A. Barnes H L. 1991b. Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C. Geochim Cosmochim Acta, 55: 1495-1504
[63]
Skinner B J, Erd R C, Grimaldi F S. 1964. Greigite, the thio-spinel of iron: A new mineral. Am Mineral, 49: 543-555
[64]
Suits N S, Wilkin R T. 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology, 26: 1099-1102
[65]
Sweeney R E, Kaplan I R. 1973. Pyrite framboid formation: Laboratory synthesis and marine sediments. Econ Geol, 68: 618-634
[66]
Vasiliev I, Franke C, Meeldijk J D, et al. 2008. Putative greigite magnetofossils from the Pliocene epoch. Nature, 82-786
[67]
Wang L, Shi X Y, Jiang G Q. 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran doushantuo formation. Paleogeogr Paleoclimatol Paleoecol, 333: 218-227
[68]
Wang P K, Huang Y J, Wang C S, et al. 2013. Pyrite morphology in the first member of the Late Cretaceous Qingshankou formation, Songliao Basin, Northeast China. Paleogeogr Paleoclimatol Paleoecol, 385: 125-136
[69]
Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygenpoor deposition during the Permin-Triassic crisis in Kashmir. Paleogeogr Paleoclimatol Paleoecol, 216: 183-188
[70]
Wignall P B, Newton R. 1998. Pyrite framboid diameter as a measure of oxygen deficiencyin ancient mudrocks. Am J Sci, 298: 537-552
[71]
Wilkin R T, Arthur M A, Dean W E. 1997b. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet Sci Lett, 148: 517-525
[72]
Wilkin R T, Arthur M A. 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea, evidence for Late Pleistocene to Holocene excursionsof the O2-H2S redox transition. Geochim Cosmochim Acta, 65: 1399-1416
[73]
Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite: An indicator of redox conditions. Geochim Cosmochim Acta, 60: 3897-3912
[74]
Yamaguchi S, Wada H. 1972. Greigite as seed for crystal growth of pyrrhotite. J Cry Grow, 15: 153-154Zhou C M, Jiang S Y. 2009.
[75]
Palaeoceanographic redox environments for the lower Cambrian Hetang formation in South China, evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Paleogeogr Paleoclimatol Paleoecol, 271: 279-286