全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨

, PP. 2665-2674

Keywords: 铜陵,胶状黄铁矿,纳米矿物学,微生物,透射电镜

Full-Text   Cite this paper   Add to My Lib

Abstract:

?新桥硫铁矿床是铜陵矿集区代表性的层状硫化物矿床,该矿床主要由层状、似层状矿体组成,伴有矽卡岩型、热液脉型矿体.黄铁矿是层状矿体中主要硫化物矿物,以胶状、细粒-中粗粒结构,块状构造产出,后期热动力作用使得胶状黄铁矿重结晶为细粒-粗粒黄铁矿,甚至相变为磁黄铁矿.本文利用粉晶X射线衍射(XRD)、场发射扫描电镜(FE-SEM)和高分辨透射电镜(HR-TEM)对新桥硫铁矿床中的胶状黄铁矿物相、形貌、微结构进行研究,结果发现胶状黄铁矿基本由黄铁矿组成,表现为纳米-亚微米粒状、花瓣状和似生物状形态.粒状黄铁矿以自形-半自形立方体为主,球形、短柱状等他形为辅,粒径大约10~500nm;扫描电镜对胶状黄铁矿大量观察发现,自形-半自形黄铁矿颗粒粒径大于它形黄铁矿颗粒,显示黄铁矿从小颗粒、不规则形态向大颗粒、自形晶演化趋势.花瓣黄铁矿主要由纳米粒级自形-半自形粒状黄铁矿组成,花瓣直径介于5~10μm,类似于生物成因的草莓黄铁矿.这些形貌和微结构特征显示胶状黄铁矿为微生物参与的矿化产物;新桥硫铁矿中胶状黄铁矿形貌和微结构差异是其就位空间和演化过程差异所致.该研究为新桥矿床乃至铜陵矿集区胶状黄铁矿成因和成矿作用提供了微尺度的矿物学支撑.

References

[1]  曾普胜, 蒙义峰, 杨竹森, 等. 2004. 安徽铜陵矿集区与块状硫化物矿床有关的热水沉积岩. 矿床地质, 23: 334-343
[2]  常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社. 8-385
[3]  顾连兴, 徐克勤. 1986. 论长江中下游石炭纪海底块状硫化物矿床. 地质学报, 62: 176-188
[4]  郭维民, 陆建军, 蒋少涌, 等. 2011b. 安徽铜陵新桥矿床下盘矿化中黄铁矿Re-Os同位素定年: 海底喷流沉积成矿的年代学证据. 中国科学: 地球科学, 56: 3023-3028
[5]  郭维民, 陆建军, 章荣清, 等. 2010. 安徽铜陵冬瓜山矿床中磁黄铁矿矿石结构特征及其成因意义. 矿床地质, 29: 405-414
[6]  郭维民, 陆建军, 章荣清, 等. 2011a. 安徽铜陵冬瓜山铜矿床的叠加改造成矿机制: 来自矿石结构的证据. 地质学报, 85: 1223-1232
[7]  何金祥, 徐克勤, 顾连兴. 1996. 对马山、大宝山变质成因磁黄铁矿不同组成结构的认识. 地球科学, 21: 305-310
[8]  侯增谦, 杨竹森, 吕庆田, 等. 2011. 安徽铜陵冬瓜山大型铜矿: 海底喷流-沉积与矽卡岩化叠加复合成矿过程. 地质学报, 85: 659-686
[9]  胡守云, Appel E, Hoffmann V, 等. 2002. 湖泊沉积物中胶黄铁矿的鉴定及其磁学意义. 中国科学D辑: 地球科学, 32: 234-238
[10]  蒋少涌, 清峰, 杨水源, 等. 2011. 长江中下游成矿带铜多金属矿床中灰泥丘的发现及其意义—以武山和冬瓜山铜矿为例. 地质学报, 85: 744-756
[11]  李红阳, 李英杰, 侯增谦, 等. 2005. 安徽新桥块状硫化物矿床地球化学特征. 地质科学, 40: 337-345
[12]  李洪星, 陆现彩, 边立曾, 等. 2012. 草莓黄铁矿微晶形态和成分的地质意义—以栖霞组含泥灰岩为例. 矿物学报, 32: 443-448
[13]  Butler I D, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulfide. Geochim Cosmochim Acta, 63: 247-275
[14]  Dong J, Zhang S H, Jiang G Q, et al. 2013.Greigite from carbonate concretions of the Ediacaran doushantuo formation in South China and its environmental implications. Precambrian Res, 225: 77-85
[15]  Goldhaber M B, Kaplan I R. 1974. The sulfur cycle. In: Goldberg E, ed. The Sea, 5. Chichester: Wiley. 569-655
[16]  Grimes S T, Brock F, Rickard D, et al. 2001. Understanding fossilization: Experimental pyritization of plants. Geology, 29: 123-126
[17]  Large D J, Sawtowicz Z, Spratt J. 1999. A cobaltite-framboidal pyrite association from the kupferschiefer: Possible implications for trace element behaviour during the earliest stages of diagenesis. Mineral Mag, 63: 353-361
[18]  Larrasoa?a J C, Roberts A P, Musgrave R J, et al. 2007. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet Sci Lett, 261: 350-366
[19]  Love L G. 1962. Biogenic primary sulphide of the Permian kupferschiefer and marl slate. Econ Geol, 57: 350-366
[20]  Love L G. 1957. Microorganisms and the presence of syngenetic pyrite. Quart J Geol Soc London, 113: 429-440
[21]  Luther G W. 1991. Pyrite synthesis via polysulfide compounds. Geochim Cosmochim Acta, 55: 2839-2849
[22]  Mann S, Nicholas H C Sparks, Frankel R B, et al. 1990. Biomineralization of ferromagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343: 258-261
[23]  Morse J W, Millero F J, Comwell J C, et al. 1987. The chemistry of the hydrogen sulfide and iron sulfide systemsin natural waters. Earth-Sci Rev, 24: 1-42
[24]  Ohfuji H, Rickard D. 2005. Experimental synthesis of framboids—A review. Earth-Sci Rev, 71: 147-170
[25]  Raiswell R. 1982. Pyrite texture, isotopic composition, and availabilityof Fe. Am J Sci, 282: 1244-1263
[26]  Reinholdsson M, Snowball I, Zillén L, et al. 2013. Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth Planet Sci Lett, 366: 137-150
[27]  Rickard D, Luther G W. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The mechanism. Geochim Cosmochim Acta, 61: 135-147
[28]  Wilkin R T, Barnes H L. 1997a. Formation processes of framboidal pyrite. Geochim Cosmochim Acta, 61: 323-339
[29]  Xu G, Zhou J. 2001. The Xinqiao Cu-S-Fe-Au deposit in the Tongling mineral district, China: Synorogenic remobilization of a stratiform sulfide deposit. Ore Geol Rev, 18: 77-94
[30]  李文达, 王文斌, 范洪源, 等. 1997. 长江中下游铜(金)矿床密集区形成条件和超大型矿床存在的可能性. 火山地质与矿产, 20: 1-131
[31]  李文达. 1989. 论扬子型铜矿床及其成因. 中国地质科学院南京地质矿产研究所所刊, 10: 1-14
[32]  梁建峰, 徐晓春, 肖秋香, 等. 2011. 安徽铜陵冬瓜山金矿床黄铁矿微量元素原位LA-ICP-MS分析及其成矿意义. 矿物学报(增刊): 1011-1012
[33]  刘裕庆, 刘兆廉, 杨成兴. 1984. 铜陵地区冬瓜山铜矿的稳定同位素研究. 中国地质科学院矿床地质研究所所刊, 11: 1-31
[34]  刘裕庆, 刘兆廉. 1987. 安徽铜陵地区石炭系地层中层状铜铁硫矿床的铅同位素研究. 中国地质科学院矿床地质研究所所刊, 2: 143-152
[35]  陆建军, 郭维民, 陈卫锋, 等. 2008. 安徽铜陵冬瓜山铜(金)矿床成矿模式. 岩石学报, 24: 1857-1864
[36]  陆现彩, 屠博文, 朱婷婷, 等. 2011. 风化过程中矿物表面微生物附着现象及意义. 高校地质学报, 17: 21-28
[37]  毛景文, 邵拥军, 谢桂青, 等. 2009. 长江中下游成矿带铜陵矿集区铜多金属矿床模型. 矿床地质, 28: 109-119
[38]  任云生, 刘连登. 2006. 铜陵地区热液成因胶状黄铁矿及其成矿意义. 矿床地质, 25: 95-98
[39]  唐永成, 吴言昌, 储国正, 等. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社. 1-351
[40]  王道华, 傅德鑫, 吴履秀, 等. 1986. 下扬子区中石炭世"沉积-海底喷出沉积"层状铜(多金属)矿床稳定同位素的特征. 中国地质科学院地质矿产研究所所刊, 7: 1-25
[41]  王文斌, 李文达, 董平, 等. 1994. 论长江中下游地区含铜黄铁矿型矿床成因. 火山地质与矿产, 15: 25-34
[42]  王彦斌, 刘敦一, 蒙义峰, 等. 2004b. 安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义. 中国地质, 31: 169-173
[43]  王彦斌, 唐索寒, 王进辉, 等. 2004a. 安徽新桥铜金矿床黄铁矿Rb/Sr同位素年龄数据. 地质论评, 5: 538-542
[44]  王跃, 朱祥坤, 程彦博, 等. 2013. 安徽新桥矿床矿相学与Fe同位素特征及其对矿场成因的制约. 吉林大学学报(地球科学版), 43: 1787-1798
[45]  谢光华, 王文斌, 李文达. 1995. 安徽新桥铜硫矿床成矿时代及成矿物质来源. 火山地质与矿产, 16: 101-107
[46]  谢建成, 杨晓勇, 杜建国, 等. 2009. 安徽铜陵新桥Cu-Au-Fe-S黄铁矿Re-Os定年及成矿意义. 地质科学, 44: 183-192
[47]  徐晓春, 陆三明, 谢巧勤, 等. 2008a. 安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义. 地质学报, 82: 500-509
[48]  徐晓春, 陆三明, 谢巧勤, 等. 2008b. 安徽铜陵冬瓜山铜金矿床流体包裹体微量元素地球化学特征及其地质意义. 岩石学报, 24: 1865-1874
[49]  徐晓春, 尹涛, 楼金伟, 等. 2010. 铜陵冬瓜山层控矽卡岩型铜金矿床的成因机制: 硫同位素制约. 岩石学报, 26: 2739-2750
[50]  杨爽, 杜杨松, 曹毅, 等. 2012. 安徽铜陵冬瓜山层控矽卡岩铜矿床形成过程—来自磁黄铁矿的证据. 现代地质, 26: 235-242
[51]  杨竹森, 侯增谦, 蒙义峰, 等. 2004. 安徽铜陵矿集区海西期喷流沉积流体系统时空结构. 矿床地质, 23: 281-297
[52]  姚孝德, 杜建国, 许卫, 等. 2012. 安徽省铜陵矿集区区域成矿模式. 合肥工业大学学报(自然科学版), 35: 965-976
[53]  藏文栓, 吴金国, 张达, 等. 2004. 铜陵新桥矿田地质地球化学特征及成因浅析. 大地构造与成矿学, 2: 187-193
[54]  周涛发, 张乐骏, 袁峰, 等. 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约. 地学前缘, 17: 306-319
[55]  Allan K. 2012. Minor element distribution in iron disulfides in coal: A geochemical review. Int J Coal Geol, 94: 32-43
[56]  Rickard D T. 1975. Kinetics and mechanism of pyrite formationat low temperatures. Am J Sci, 275: 636-652
[57]  Rickard D. 1997. Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation. Geochim Cosmochim Acta, 61: 115-134
[58]  Ruppert L F, Minkin J A, Mc Gee J J, et al. 1992. An occurrence of arsenic-bearing pyrite in the Upper Freeport coal bed, west-central Pennsylvania. Energ Fuel, 6: 120-125
[59]  Rust G W. 1935. Colloidal primary copper ores at Cornwall mines, southeastern Missouri. J Geol, 43: 398-426
[60]  Schoonen M A A, Barnes H L. 1991a. Reactions formingpyrite and marcasite from solution: II. Via FeS precursors below 100°C. Geochim Cosmochim Acta, 55: 1505-1514
[61]  Schoonen M A A. 2004. Mechanisms of sedimentary pyrite formation. In: Amend J P, Edwards K R, Lyons T W, eds. Sulfur Biogeochemistry. Geol Soc Amer Spec Pap, 379: 117-134
[62]  Schoonen M A A. Barnes H L. 1991b. Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C. Geochim Cosmochim Acta, 55: 1495-1504
[63]  Skinner B J, Erd R C, Grimaldi F S. 1964. Greigite, the thio-spinel of iron: A new mineral. Am Mineral, 49: 543-555
[64]  Suits N S, Wilkin R T. 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology, 26: 1099-1102
[65]  Sweeney R E, Kaplan I R. 1973. Pyrite framboid formation: Laboratory synthesis and marine sediments. Econ Geol, 68: 618-634
[66]  Vasiliev I, Franke C, Meeldijk J D, et al. 2008. Putative greigite magnetofossils from the Pliocene epoch. Nature, 82-786
[67]  Wang L, Shi X Y, Jiang G Q. 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran doushantuo formation. Paleogeogr Paleoclimatol Paleoecol, 333: 218-227
[68]  Wang P K, Huang Y J, Wang C S, et al. 2013. Pyrite morphology in the first member of the Late Cretaceous Qingshankou formation, Songliao Basin, Northeast China. Paleogeogr Paleoclimatol Paleoecol, 385: 125-136
[69]  Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygenpoor deposition during the Permin-Triassic crisis in Kashmir. Paleogeogr Paleoclimatol Paleoecol, 216: 183-188
[70]  Wignall P B, Newton R. 1998. Pyrite framboid diameter as a measure of oxygen deficiencyin ancient mudrocks. Am J Sci, 298: 537-552
[71]  Wilkin R T, Arthur M A, Dean W E. 1997b. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions. Earth Planet Sci Lett, 148: 517-525
[72]  Wilkin R T, Arthur M A. 2001. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea, evidence for Late Pleistocene to Holocene excursionsof the O2-H2S redox transition. Geochim Cosmochim Acta, 65: 1399-1416
[73]  Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite: An indicator of redox conditions. Geochim Cosmochim Acta, 60: 3897-3912
[74]  Yamaguchi S, Wada H. 1972. Greigite as seed for crystal growth of pyrrhotite. J Cry Grow, 15: 153-154Zhou C M, Jiang S Y. 2009.
[75]  Palaeoceanographic redox environments for the lower Cambrian Hetang formation in South China, evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Paleogeogr Paleoclimatol Paleoecol, 271: 279-286

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133