全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

热带太平洋沃克环流变化的数值模拟

DOI: 10.1007/s11430-014-4902-8, PP. 2576-2592

Keywords: 北大西洋涛动,大气阻塞,温度,降水沃克环流,FGOALS-g2,FGOALS-s2,历史气候模拟试验,水循环限制,SST变化分布型,AMIP试验

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对LASG/IAP发展的耦合系统模式FGOALS-g2和FGOALS-s2,评估了其对热带太平洋沃克环流气候态的模拟能力,在此基础上,分析了沃克环流的变化特征,讨论了沃克环流变化的机理.对20世纪历史模拟结果的分析表明,两个模式均能够合理再现热带太平洋沃克环流气候态分布特征.观测中,过去百年(1900~2004年)和过去55年(1950~2004年),沃克环流减弱,而近23年(1982~2004年),沃克环流增强.在三个时间段内,FGOALS-g2模拟的沃克环流均减弱.FGOALS-s2中,过去百年赤道太平洋大气环流减弱,整个热带太平洋大气环流变化不明显;而在过去55年和近23年,模拟的沃克环流均增强.沃克环流变化模拟偏差与模式模拟的内部变率与观测不一致有关.降水与边界层向对流层输送的水汽相平衡的水循环约束关系可以很好地解释沃克环流的变化.FGOALS-g2中,在过去百年、55年和23年间,热带西太平洋降水相对变率(ΔP/P)增幅小于水汽相对变率(Δq/q)增幅、东太平洋冷舌区ΔP/P增幅大于Δq/q增幅,造成沃克环流减弱.FGOALS-s2中,在过去55年及23年间,热带西太平洋对流质量交换增强,东太平洋对流质量交换减弱,使得沃克环流增强.热带太平洋SST变化趋势分布型主导着沃克环流的变化.在过去55年和23年间,FGOALS-g2(FGOALS-s2)中,热带太平洋海表面温度(SST)变化表现为类ElNi?o(LaNi?a)型分布,对应沃克环流减弱(增强).因此,气候系统模式合理模拟沃克环流变化的前提是对热带太平洋SST变化空间型的成功模拟.这一结论得到AMIP试验结果的支持.

References

[1]  DiNezio P N, Vecchi G A, Clement A C. 2013. Detectability of changes in the Walker circulation in response to global warming. J Clim, 26: 4038-4048
[2]  Gastineau G, Li L, Treut H L. 2009. The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J Clim, 22: 3993-4013
[3]  Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming. J Clim, 19: 5686-5699
[4]  Julian P R, Chervin R M. 1978.A study of the Southern Oscillation and the Walker circulation. Mon Weather Rev, 106: 1433-1451
[5]  Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 77: 437-470
[6]  Smith T M, Reynolds R W, Peterson T C, et al. 2008. Improvements to NOAA''s historical merged land-ocean surface temperature analysis (1880-2006). J Clim, 21:2283-2296
[7]  Sohn B J, Yeh S W, Schmetz J, et al. 2013. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim Dyn, 40: 1721-1732
[8]  Solomon A, Newman M. 2012. Reconciling disparate 20th century Indo-Pacific ocean temperature trends in the instrumental record. Nat Clim Change, 2: 691-699
[9]  Tokinaga H, Xie S P, Deser C, et al. 2012a. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491: 439-443
[10]  Tokinaga H, Xie S P, Timmermann A. 2012b. Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J Clim, 25: 1689-1710
[11]  Vecchi G A, Clement A C, Soden B J. 2008. Examining the tropical Pacific’s response to global warming. Eos Trans AGU, 89: 81-83
[12]  Allan R, Ansell T. 2006. A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004. J Clim, 19: 5816-5842
[13]  Allan R J, Lindesay J, Parker D. 1996. El Ni?o Southern Oscillation and Climatic Variability. Australia: CSIRO. 402
[14]  Bao Q, Lin P, Zhou T, et al. 2013. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv Atmos Sci, 2013, 30: 561-576
[15]  Barber R T, Chavez F P. 1983. Biological consequences of El Ni?o. Science, 222: 1203-1210
[16]  Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev, 97: 163-172
[17]  Cane M A, Sarachik E S. 1977. Forced baroclinic ocean motions, Part II: The linear equatorial bounded case. J Mar Res, 35: 395-432
[18]  Collins M, An S, Cai W, et al. 2010. The impact of global warming on the tropical Pacific Ocean and El Ni?o. Nat Geosci, 3: 391-397
[19]  Deser C, Phillip A S, Alexander M A. 2010. Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett, 37: L10701, doi: 10.1029/2010 GL043321
[20]  Deser C, Wallace J M. 1990. Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J Clim, 3: 1254-1281
[21]  DiNezio P N, Clement A C, Vecchi G A, et al. 2009. Climate response of the Equatorial Pacific to global warming. J Clim, 22: 4873-4892
[22]  DiNezio P N, Clement A C, Vecchi G A. 2010. Reconciling differing views of tropical Pacific climate change. Eos Trans AGU, 91: 141-142
[23]  Knutson T R, Manabe S. 1995. Time-mean response over the tropical Pacific to increase CO2 in a coupled ocean-atmosphere model. J Clim, 8: 2181-2199
[24]  L’Heureux M, Lee S, Lyon B. 2013. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat Clim Change, 3: 571-576
[25]  Li G, Ren B. 2012. Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979-2001. Theor Appl Climatol, 107: 59-72
[26]  Li L J, Lin P, Yu Y, et al. 2013. The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv Atmos Sci, 30: 543-560
[27]  Liu J, Wang B, Cane M A, et al. 2013. Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493: 656-659
[28]  Luo J J, Sasaki W, Masumoto Y. 2012. Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA, 109: 18701-18706
[29]  Meng Q, Latif M, Park W, et al. 2012. Twentieth century Walker circulation change: Data analysis and model experiments. Clim Dyn, 38: 1757-1773
[30]  Power S B, Kociuba G. 2011. What caused the observed twentieth-century weakening of the Walker circulation? J Clim, 24: 6501-6514
[31]  Power S B, Smith I N. 2007. Weakening of the Walker circulation and apparent dominance of El Ni?o both reach record levels, but has ENSO really changed? Geophys Res Lett, 34: L18702, doi: 10.1029/2007GL030854
[32]  Vecchi G A, Soden B J, Wittenberg A T, et al. 2006. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441: 73-76
[33]  Vecchi G A, Soden B J. 2007. Global warming and the weakening of the tropical circulation. J Clim, 20: 4316-4340
[34]  Wang B, Liu J, Kim H, et al. 2012. Recent change of the global monsoon precipitation (1979-2008). Clim Dyn, 39: 1123-1135
[35]  Webster P J, Maga?a T N, Palmer J, et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res, 103: 14451-14510
[36]  Xie P P, Arkin P A. 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. BAMS, 78: 2539-2558
[37]  Yu B, Zwiers F W. 2010. Changes in equatorial atmospheric zonal circulations in recent decades. Geophys Res Lett, 37: L05701, doi: 10.1029/2009GL042071
[38]  Yu B, Zwiers F W, Boer G J, et al. 2012. Structure and variances of equatorial zonal circulation in a multimodel ensemble. Clim Dyn, 39: 2403-2419
[39]  Zhang M, Song H. 2006. Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys Res Lett, 33: L12701, doi: 10.1029/2006GL025942
[40]  Zhou T, Song F, Chen X. 2013. Historical evolutions of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results? Adv Atmo Sci, 30: 638-657

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133