全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

洱海湖气界面水汽和二氧化碳通量交换特征

DOI: 10.1007/s11430-014-4828-1, PP. 2527-2539

Keywords: 洱海,湖面通量,涡动相关法,粗糙度,整体输送系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于2012年涡动相关法取得的洱海湖气之间湍流通量资料,计算了湖面反照率、空气动力学粗糙度和整体输送系数等湖气交换过程的基本物理参数;分析高原湖泊表面动量通量、感热通量、潜热通量和二氧化碳通量的变化特征及其主要的控制因子;采用神经网络法对缺失蒸发量数据进行填补,估算了洱海湖面全年蒸发量.2012年全年蒸发量为(1165±15)mm,大于年实际降水量(2012年的年降水量为818mm).洱海局地环流在全年范围内较显著;全年主导风向为东南(谷风/湖风)和西北风(山风/陆风).高原湖泊感热通量通常只有每平方米几十瓦,通常午后感热通量为负值;即湖面向大气输送热量.夏季湖泊大气界面感热通量最大值出现在清晨,与湖气温差的出现时间一致;在白天湖面的有效能量主要分配为潜热通量;湖气温差和水汽压差分别是感热通量和潜热通量日变化的主要控制因子.湖气界面二氧化碳通量除夏季存在弱的吸收外,其余季节(冬季)表现为弱的排放.湖面反照率的季节变化规律与太阳高度角的季节变动有关,同时湖面反照率与水的浑浊度等有关.与实际观测得到的湖面反照率相比,CLM4湖泊模式在冬季低估(夏季高估)了湖面反照率.

References

[1]  Rouse W R, Oswald C M, Binyamin J, et al. 2003. Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. J Hydrometeorol, 4: 720-730
[2]  Samuelsson P, Tjernstr?m M. 2001. Mesoscale flow modification induced by land-lake surface temperature and roughness differences. J Geophys Res, 106: 12419-12435
[3]  Schertzer W M, Rouse W R, Blanken P D. 2000. Cross-lake variation of physical limnological and climatological processes of Great Slave Lake. Phys Geogr, 21: 385-406
[4]  Schertzer W M. 1997. Freshwater Lakes. In: Bailey W G, Oke T E, Rouse W R, eds. The Surface Climates of Canada. Montreal: McGill-Queens University Press. 124-148
[5]  Schindler D. 2009. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr, 54: 2349-2358
[6]  Small E E, Giorgi F, Sloan L C, et al. 2001. The effects of desiccation and climatic change on the hydrology of the Aral Sea. J Clim, 14: 300-322
[7]  Spence C, Rouse W R, Worth D, et al. 2003. Energy budget processes of a small northern lake. J Hydrometeorol, 4: 694-701
[8]  Subin Z M, Riley W J, Mironov D. 2012. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J Adv Model Earth Syst, 4: M02001, doi: 10.1029/2011MS000072
[9]  Vesala T, Huotari J, Rannik ü, et al. 2006. Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J Geophys Res, 111: D11101, doi: 10.1029/2005JD006365
[10]  Vickers D, Mahrt L. 1997. Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol, 14: 512-526
[11]  Webb E K, Pearman G I, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc, 106: 85-100
[12]  Xu X D, Zhang R H, Shi X H, et al. 2008. A new integrated observational system over the Tibetan Plateau. Bull Amer Meteorol Soc, 89: 1492-1496
[13]  Zhang R H, Koike T, Xu X D, et al. 2012. A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project): An overviews. J Meteorol Soc Jpn, 90C: 1-16
[14]  陈家宜, 王介民, 光田宁. 1993. 一种确定地表粗糙度的独立方法. 大气科学, 17: 21-26
[15]  李茂善, 马耀明, 孙方林, 等. 2008. 纳木错湖地区近地层微气象特征及地表通量交换分析. 高原气象, 27: 727-732
[16]  李照国, 吕世华, 奥银焕, 等. 2012. 鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析. 地理科学进展, 31: 602-608
[17]  黄慧君, 王永平, 李庆红. 2010. 气候变暖背景下洱海水面蒸发量的变化及影响因素. 气象与环境学报, 26: 32-35
[18]  任晓倩, 孙菽芬, 陈文, 等. 2013. 湖泊数值模拟研究现状综述. 地球科学进展, 28: 347-356
[19]  肖薇, 刘寿东, 李旭辉, 等. 2012. 大型浅水湖泊与大气之间的动量和水热交换系数—以太湖为例. 湖泊科学, 24: 932-942
[20]  杨显玉, 文军. 2012. 扎陵湖和鄂陵湖大气边界层特征的数值模拟. 高原气象, 31: 927-934
[21]  Adrian R, Reilly C M O, Zagarese H, et al. 2009. Lakes as sentinels of climate change. Limnol Oceanogr, 54: 2283-2297
[22]  Blanken P D, Rouse W R, Culf A D, et al. 2000. Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour Res, 36: 1069-1077
[23]  Bonan G B. 1995. Sensitivity of a GCM simulation to inclusion of inland water surfaces. J Clim, 8: 2691-2704
[24]  Downing J, Prairie Y, Cole J, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr, 51: 2388-2397
[25]  Dutra E, Stepanenko V M, Balsamo G, et al. 2010. An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environ Res, 15: 100-112
[26]  Foken T, G?ockede M, Mauder M, et al. 2004. Post-field data quality control. Handbook of micrometeorology. In: Lee X, Massman W J, Law B, eds. Handbook of Micrometeorology: A Guide For Surface Flux Measurement and Analysis. Dordrecht: Kluwer Academic Publishers. 181-208
[27]  Kaimal J C, Finnigan J J. 1994. Atmospheric Boundary Layer Flows: Their Structure and Measurement. New York: Oxford University Press. 289
[28]  Kormann R, Meixner F X. 2001. An analytical footprint model for non-neutral stratification. Bound-Lay Meteorol, 99: 207-224
[29]  Lofgren, B M. 1997. Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J Clim, 10: 2847-2858
[30]  Long Z, Perrie W, Gyakum J, et al. 2007. Northern lake impacts on local seasonal climate. J Hydrometeorol, 8: 881-896
[31]  Ma R H, Duan H T, Hu C M, et al. 2010. A half-century of changes in China’s lakes: Global warming or human influence? Geophys Res Lett, 37, L24106, doi: 10.1029/2010GL045514
[32]  Moore C J. 1986. Frequency response corrections for eddy correlation systems. Bound-Lay Meteorol, 37: 17-35
[33]  Neumann H H, Hartog G D. 1994. Carbon dioxide fluxes over a raised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES). J Geophys Res, 99: 1529-1538
[34]  Nordbo A, Launiainen S, Mammarella I, et al. 2011. Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res, 116: D02119, doi: 10.1029/2010JD014542
[35]  Oswald C J, Rouse W R. 2004. Thermal characteristics and energy balance of various-size Canadian Shield lakes in the Mackenzie River Basin. J Hydrometeorol, 5: 129-144
[36]  Rouse W R, Blanken P D, Bussières N, et al. 2008. An investigation of the thermal and energy balance regimes of Great Slave and Great Bear Lakes. J Hydrometeorol, 9: 1318-1333

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133