全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

降雨对PR雷达海面风速探测的影响及校正

DOI: 10.1007/s11430-014-4890-8, PP. 2515-2526

Keywords: 降雨雷达,二次路径衰减,体后向散射,"溅射"效应,降雨传输模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对降雨雷达(PR)海面测风精度易受降雨影响的特点,本文从雨滴对雷达信号的二次路径衰减效应、体后向散射效应以及雨滴对海表的"溅射"效应这三个因素出发,推导了降雨条件下PR雷达方程,并利用Ku波段雨滴衰减模型、球形雨滴体后向散射模型结合2010年6~8月的PR观测数据以及TMI风速数据对PR降雨雷达方程进行逆向求解,定量分析了降雨对PR测风精度的影响,发现降雨对PR回波信号的影响主要表现为雨滴的二次路径衰减效应和雨滴对海表的"溅射"效应,雨滴的体后向散射效应相对最弱;而且,雨滴的二次路径衰减效应和雨滴的体后向散射效应均随降雨强度以及雷达波束在降雨层传输经过的路径增加而增强;雨滴对海表的"溅射"效应对回波能量具有衰减作用,且衰减作用随降雨强度以及入射角的增加而增强.最后,将雨滴体后向散射效应和雨滴对海表的"溅射"效应合并考虑,构建了降雨条件下PR雷达降雨辐射传输模型,并结合2012年6~10月三次台风观测数据对模型精度进行了验证,结果表明,校正前PR观测等与海面风场引起的σ0平均偏差为2.95dB,均方差为3.10dB;校正后二者之间的平均偏差为0.64dB,均方差为1.61dB,表明本文方法能有效补偿降雨对PR观测σ0衰减的部分.

References

[1]  Thurai M, Deguchi E, Okamoto K, et al. 2005. Rain height variability in the tropics. Microwaves, Antennas and Propagation, Proc IEEE, 152: 17-23
[2]  Ulaby F T, Moore R K, Fung A K. 1981. Microwave Remote Sensing. Massachusetts: Addison-Wesley Publishing Company. 318-325
[3]  林海, 魏重, 吕达仁. 1981. 雨滴的微波辐射特征. 大气科学, 5: 188-197
[4]  李黄. 2007. 利用Ku波段卫星通信雨衰探测大气降水的初步研究. 遥感学报, 10: 568-572
[5]  刘磊, 李浩, 高太长. 2008. 雨滴的近似椭球模型及其近红外散射特性研究. 气象科学, 28: 271-275
[6]  张亮, 黄思训, 钟剑, 等. 2010. 基于降雨率的GMF+RAIN模型构建及在台风风场反演中的应用. 物理学报, 59: 7478-7491
[7]  商建, 张平. 2009. 星载测雨雷达反射率因子反演算法的改进研究. 武汉理工大学学报, 31: 154-161
[8]  张培昌, 杜秉玉, 戴铁丕. 2000. 雷达气象学. 第2版. 北京: 气象出版社. 70-73
[9]  Bliven F L, Sobieski P, Craeye C. 1997. Rain generated ring-waves: Measurements and modeling for remote sensing. Int J Remote Sens, 18: 221-228
[10]  Crane R K. 1971. Propagation phenomena affecting satellite communication systems operating in the centimeter and millimeter wavelength bands. Proc IEEE, 59: 173-188
[11]  Craeye C, Sobieski P W, Bliven F L. 1997. Scattering by artificial wind and rain roughed water surfaces at oblique incidences. Int J Remote Sens, 18: 2241-2246
[12]  Conner L N, Chang P S. 2000. Ocean surface wind retrievals using the TRMM microwave imager. IEEE Trans Geosci Remote Sensing, 38: 2009-2016
[13]  Chiu L S, Chang A T C. 2000. Oceanic rain column height derived from SSM/I. J Clim, 13: 4125-4136
[14]  Durden S P, Vesecky J F. 1985. A physical radar cross-section model for a wind-driven sea with swell. IEEE J Oceanic Eng, 10: 445-451
[15]  Donneley W J, Carswell J R, McIntosh R E, et al. 1999. Revised ocean backscatter models at C and Ku-band under high wind conditions. J Geophys Res, 104: 11485-11497
[16]  David W D, David G L. 2004. Evaluating the effect of rain on SeaWinds scatterometer measurements. J Geophys Res, 109, C02005, doi: 10.1029/2002JC001741
[17]  Green T, Houk D F. 1979. The mixing of rain with near-surface water. J Fluid Mech, 90: 569-588
[18]  Graf J, Sasaki C, Winn C, et al. 1998. NASA scatterometer experiment. Astron Astrophys, 43: 397-407
[19]  Kummerow C, Barnes W, Kozu T, et al. 1998. The tropical rainfall measureing mission (TRMM) sensor package. J Atmos Ocean Technol, 15: 809-817
[20]  Li L, Eastwood I M, Stephen L, et al. 2001. A surface wind Model-Based method to estimate rain-induced radar path attenuation over ocean. J Atmos Ocean Technol, 19: 658-672
[21]  Li L, Im E, Connor L N, et al. 2004. Retrieving ocean surface wind speed from the TRMM precipitation radar measurement. IEEE Trans Geosci Remote Sensing, 42: 1271-1282
[22]  Laupattarakasem P, Jones L W, Hennon C C, et al. 2010. Improved hurricane ocean vector winds using seawinds Active/passive retrievals. IEEE Trans Geosci Remote Sensing, 48: 2909-2923
[23]  Manton M J. 1973. On the attenuation of sea waves by rain. Geophys Fluid Dyn, 5: 249-260
[24]  Meneghini R, Iguchi T, Kozu T, et al. 2000. Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J Appl Meteorol, 39: 2053-2070
[25]  Nystuen J A. 1989. A note on the attenuation of surface gravity waves by rainfall. J Geophys Res, 95: 18353-18355
[26]  Nielsen S N. 2007. A wind and rain backscatter model derieved from AMSR and Seawinds data. Masters Tissertation. Brigham: Brigham Yong University
[27]  Oguchi T. 1964. Attenuation of electromagnetic wave due to rain with distorted raindrops (part 2). J Radio Res Lab, 11: 19-44
[28]  Quilfen Y, Chapron B, Elfouhaily T, et al. 1998. Observation of tropical cyclones by high-resolution scatterometry. J Geophys Res, 103: 7767-7786
[29]  Poon Y K, Tang S, Wu J. 1992. Interactions between wind and waves. J Phys Oceanogr, 22: 976-987
[30]  Ray P S. 1972. Broadband complex refractive indices of ice and water. Appl Optics, 11: 1836-1844
[31]  Yang Z, Tang S, Wu J. 1997. An experimental study of rain effects on fine structures of wind waves. J Phys Oceanogr, 27: 419-430
[32]  Yueh S H, Stiels B W, Tsai W Y, et al. 2001. QuikSCAT geophysical model function for tropical cyclones and application to hurricane Floyd. IEEE Trans Geosci Remote Sensing, 39: 2601-2612
[33]  Yueh S H, Stiels B W, Liu W T, et al. 2003. QuikSCAT wind retrievals for tropical cyclones. IEEE Trans Geosci Remote Sensing, 2: 1250-1262

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133