全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于星载激光雷达GLAS和光学MODIS数据中国森林冠层高度制图

DOI: 10.1007/s11430-014-4905-5, PP. 2487-2498

Keywords: GLAS,波形分解,地形因子,冠层高度模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?星载GLAS波形数据精确记录了光斑内所有探测目标的垂直结构信息,在森林结构参数反演方面具有极大的应用潜力,但GLAS激光脚印是不连续分布的离散点且密度较低(中国地区平均约为0.14point/km2),因此仅利用GLAS数据不能获得高精度的连续植被高度分布.已有研究表明,相对其他光学数据及反演参数,MODISBRDF参数最能反映植被结构信息.本文利用同时期(2008年2月)的GLAS与MODIS数据,首先采用小波分析方法提取GLAS数据的波形特征参数,通过ASTERGDEM数据计算地形指数,并辅以植被分类数据分三种森林类型分别建立基于波形特征参数和地形指数的树高估算模型;然后,通过神经网络训练建立基于GLAS树高和最佳MODISBRDF波段组合的树高反演模型,并应用该模型得到中国森林植被平均高度的连续分布图;最后,利用野外实测树高和机载激光雷达数据提取树高分别对反演结果进行验证,结果表明该模型反演精度较高.

References

[1]  Alan B. NASA Map Sees Earth’s Trees in a New Light. 2012. Available: http://www.nasa.gov/topics/earth/features/forest20120217.html
[2]  Bartholomé E, Belward A S. 2005. GLC2000: A new approach to global land covers mapping from Earth observation data. Int J Remote Sens, 26: 1959-1977
[3]  Brown S, Schroeder P E. 1999. Spatial patterns of aboveground production and mortality of woody biomass for eastern US forests. Ecol Appl, 9: 968-980
[4]  Clapk M L, CLark D B, Roberts D A. 2004. Small footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote Sens Environ, 91: 68-89
[5]  Fang H, Liang S. 2003. Retrieving leaf area index with a neural network method: Simulation and validation. IEEE Trans Geosci Remote Sens, 41: 2052-2062
[6]  Friedl M A, McIver D K, Hodges J C F, et al. 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens Environ, 83: 287-302
[7]  Gao F, Schaaf C B, Strahler A H, et al. 2003. Detecting vegetation structure using a Kernel-based BRDF Model. Remote Sens Environ, 86: 198-205
[8]  Hansen M C, DeFries R S, Townshend J R G, et al. 2000. Global land and cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens, 21: 1331-1364
[9]  Heiskanen J. 2006. Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data. Remote Sens Environ, 103: 503-511
[10]  Hyde P, Nelson R, Kimes D, et al. 2007. Exploring LIDAR-Radar synergy predicting above ground biomass in a south western Ponderosa pine forest using LIDAR, SAR and InSAR. Remote Sens Environ, 105: 28-38
[11]  Jiao Z, Li X, Wang J, et al. 2011. Assessment of MODIS BRDF shape indicators. J Remote Sens, 15: 432-443
[12]  Kimes D S, Ranson K J, Sun G Q, et al. 2006. Predicting lidar measured forest vertical structure from multi-angle spectral data. Remote Sens Environ, 100: 503-511
[13]  Lee J. 2006. ICESat (GLAS) Science Processing Software Document Series-GSAS User′s Guide (V6.0). Available: http://nsidc.org/data/docs/ daac/glas_ancillary_products.html
[14]  Wang Z S, Crystal B S, Philip L, et al. 2011. Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data. Remote Sens Environ, 115: 1595-1601
[15]  Wang C, Glenn F N. 2008. A linear regression method for tree canopy height estimation using airborne LiDAR data. Can J Remote Sens, 34: 217-227
[16]  Xing Y Q, Alfred D Gr, Zhang J J, et al. 2010. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: A case study in Changbai Mountains, China. Int J Appl Earth Obs, 12: 385-392
[17]  Zhang J, Rivard B, Sánchez-Azofeifa A, et al. 2006. Intra-and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery. Remote Sens Environ, 105: 129-141
[18]  董立新, 李贵才, 唐世浩. 2011. 中国南方森林冠顶高度Lidar反演—以江西省为例. 遥感学报, 15: 1308-1314
[19]  庞勇, 赵峰, 李增元, 等. 2008. 机载激光雷达平均树高提取研究. 遥感学报, 12: 152-158
[20]  Abshire J B, Sun X, Riris H, et al. 2005. Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance. Geophys Res Lett, 32: 1534-1536
[21]  Cloude S R, Papathanassiou K P. 1998. Polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens, 36: 1551-1565
[22]  De Jong S M, Pebesma E J, Lacaze B. 2003. Above-ground biomass assessment of Mediterranean forests using airborne imaging spectrometry: The DAIS Peyne experiment. Int J Remote Sens, 24: 1505-1520
[23]  Deng F, Chen J.M, Plununer S, et al. 2006. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans Geosci Remote Sens, 44: 2219-2229
[24]  Lefsky M A, Harding D J, Keller M, et al. 2005. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett, 32, doi: 10.1029/2005GL023971
[25]  Lefsky M A, Keller M, Pang Y, et al. 2007. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. J Appl Remote Sens, 1, doi: 10.1117/1.2795724
[26]  Loveland T R, Reed B C, Brown J F, et al. 2000. Development of a global land covers characteristics database and IGBP DISCover from 1 km AVH RR data. Int J Remote Sens, 21: 1303-1330
[27]  Neumann M, Ferro F L, Reigber A. 2009. Improvement of Vegetation Parameter Retrieval from Polarimetric SAR Interferometry using a Simple Polarimetric Scattering Model. 4th POLinSAR Workshop
[28]  Nilsson M. 1996. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens Environ, 56: 1-7
[29]  Pang Y, Lefsky M A, Hans-Erik A, et al. 2008b. Validation of the ICEsat vegetation product using crown-area-weighted mean height derived using crown delineation with discrete return lidar data. Can J Remote Sens, 34: 471-484
[30]  Ran Y H, Li X, Lu L, et al. 2012. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory. Int J Geogr Inf Sci, 26: 169-191
[31]  Ran Y H, Li X, Lu L. 2010. Evaluation of four remote sensing based land cover products over China. Int J Remote Sens, 31: 391-401
[32]  Salomonson V V, Barnes W, Xiong J, et al. 2002. An overview of the Earth Observing System MODIS instrument and associated data systems performance. In: Geoscience and Remote Sensing Symposium. IGARSS''02. IEEE International, 2: 1174-1176
[33]  Sun G Q, Ranson K J, Zhang Z J, 2006. Forest vertical parameters from lidar and multi-angle imaging spectrometer data. J Remote Sens, 10: 523-530
[34]  Tighe M L, Chamberlain D. 2009. Accuracy Comparison of the SRTM, ASTER, NED, NEXTMAP? USA Digital Terrain Model over Several USA Study Sites. In: Proceedings of the ASPRS/MAPPS 2009 Fall Conference
[35]  Wang C, Tang F X, Li L W, et al. 2013. Wavelet analysis for ICESat/GLAS waveform decomposition and its application in average tree height estimation. IEEE Geosci Remote Sens Lett, 10: 115-119

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133