全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

构造煤中敏感元素迁移、聚集规律及地质控制因素—以淮北海孜矿为例

DOI: 10.1007/s11430-014-4857-9, PP. 2419-2430

Keywords: 构造煤,敏感元素,迁移聚集,地质控制,海孜矿

Full-Text   Cite this paper   Add to My Lib

Abstract:

?构造煤是煤层在构造应力作用下发生变形变质的产物,煤中元素在变形变质过程的迁移、聚集在很大程度上是对应力-应变环境的响应.基于安徽淮北海孜矿中不同变形序列构造煤样,利用XRF和ICP-MS方法测定了煤中49种元素的含量,结合煤的显微分析,探讨了不同类型构造煤中敏感元素迁移、聚集规律及其地质控制.结果表明,煤中矿物的分布和形态与构造煤变形程度有关,从弱脆性变形煤中的有序分布向韧性变形煤的无序结构演化.依据煤中元素分布特征,将构造煤中元素迁移模式分为稳定型、聚集型、散失型和复杂型等4类,元素迁移模式与构造煤类型密切相关.研究发现,构造煤的变质变形作用并未改变稀土元素(REE)的整体分布形态,但稀土元素分布随构造煤变形出现明显的动力分异现象.由此可以认为,成煤期后的构造作用、构造煤的脆性和韧性变形机制及其伴随的动热效应是影响构造煤中元素重新分配的主要因素,构造运动为元素的再次迁移提供了动力和基础,变质变形过程决控制了元素迁移的方式和途径,动热效应是煤变质作用发生的重要原因,构造应力加速了元素迁移、聚集的速率,从而使元素随煤体变形发生动力分异.

References

[1]  Bustin R M, Ross J V, Rouzaud J N. 1995. Mechanisms of graphite formation from kerogen: Experimental evidence. Int J Coal Geol, 28: 1-36
[2]  Cao Y X, Davis A, Liu X W, et al. 2003. The influence of tectonic deformation on some geochemical properties of coals—A possible indicator of outburst potential. Int J Coal Geol, 53: 69-79
[3]  Cao Y X, He D D, Glick D C. 2001. Coal and gas outbursts in footwalls of reverse faults. Int J Coal Geol, 48: 47-63
[4]  Dai S F, Ren D Y, Hou X L, et al. 2003. Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. Int J Coal Geol, 55: 117-138
[5]  Dai S F, Zeng R S, Sun Y H. 2006. Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int J Coal Geol, 66: 217-226
[6]  Dai S F, Wang X B, Chen W M, et al. 2010a. A high-pyrite semianthracite of Late Permian age in the Songzao coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs. Int J Coal Geol, 83: 430-445
[7]  Dai S F, Zhou Y P, Zhang M Q, et al. 2010b. A new type of Nb(Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int J Coal Geol, 83: 55-63
[8]  Dai S F, Ren D Y, Chou C, et al. 2012. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int J Coal Geol, 94: 3-21
[9]  Diehl S F, Goldhaber M B, Koenig A E, et al. 2012. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: Evidence for multiple episodes of pyrite formation. Int J Coal Geol, 90: 238-249
[10]  Jiang B, Qu Z H, Geoff W, et al. 2010. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield, China. Int J Coal Geol, 82: 175-183
[11]  Kerrich R, Fyfe W S. 1977. Local modification of rock chemistry by deformation contributions of mineralogy and petrology. Contrib Mineral Petrol, 65: 183-190
[12]  Kolker A. 2012. Minor element distribution in iron disulfides in coal: A geochemical review. Int J Coal Geol, 94: 32-43
[13]  Liu G J, Vassilev S V, Gao L F, et al. 2005. Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China. Energy Conv Manag, 46: 2001-2009
[14]  Qu Z H, Wang G, Jiang B, et al. 2010. Experimental study on the porous structure and compressibility of tectonized coals. Energy Fuels, 24: 2964-2973
[15]  Ren D Y, Zhao F H, Wang Y Q, et al. 1999. Distributions of minor and trace elements in Chinese coals. Int J Coal Geol, 40: 109-118
[16]  Schatzel S J, Stewart B W. 2003. Rare earth element sources and modification in the Lower Kittanning coal bed, Pennsylvania: Implications for the origin of coal mineral matter and rare earth element exposure in underground mines. Int J Coal Geol, 54: 223-251
[17]  Srivastava H, Mitra H. 1996. Deformation mechanisms and inverted thermal profile in the North Almora thrust mylonite zone, Kumaon Lesser Himalaya, India. J Struct Geol, 18: 27-39
[18]  Sun R Y, Liu G J, Zheng L G, et al. 2010. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan coalfield, Anhui, China. Int J Coal Geol, 81: 81-96
[19]  Sun Y, Shen X Z, Liu S H. 1984. Preliminary analysis of some chemical determined data from the compressive fault zone at Dayu. Geochemistry, 3: 285-294
[20]  Tang Y, Chang C, Zhang Y, et al. 2009. Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan Coalfield, Hebei Province, China. Energy Explor Exploit, 27: 143-152
[21]  Vejahati F, Xu Z, Gupta R. 2010. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization—A review. Fuel, 89: 904-911
[22]  Wang W F, Qin Y, Sang S X, et al. 2008. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China. Int J Coal Geol, 76: 309-317
[23]  Ward C R. 2002. Analysis and significance of mineral matter in coal seams. Int J Coal Geol, 50: 135-168
[24]  Yang M, Liu G J, Sun R Y, et al. 2012. Characterization of intrusive rocks and REE geochemistry of coals from the Zhuji Coal Mine, Huainan Coalfield, Anhui, China. Int J Coal Geol, 94: 283-295
[25]  Zhang J Y, Ren D Y, Zhu Y M, et al. 2004. Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China. Int J Coal Geol, 57: 49-61
[26]  Zheng L G, Liu G J, Qi C C, et al. 2008a. The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal, Anhui Province, China. Int J Coal Geol, 73: 139-155
[27]  Zheng L G, Liu G J, Wang L, et al. 2008b. Composition and quality of coals in the Huaibei Coalfield, Anhui, China. Int J Coal Geol, 97: 59-68
[28]  琚宜文, 侯泉林, 姜波, 等. 2006. 淮北海孜煤矿断层与层间滑动构造组合型式及其形成机制. 地质科学, 41: 35-43
[29]  琚宜文, 姜波, 侯泉林, 等. 2005. 构造煤结构成分应力效应的傅里叶变换红外光谱研究. 光谱学与光谱分析, 25: 1216-1220
[30]  琚宜文, 林红, 李小诗, 等. 2009. 煤岩构造变形与动力变质作用. 地学前缘, 16: 158-166
[31]  琚宜文, 王桂梁. 2002. 煤层流变及其与煤矿瓦斯突出的关系—以淮北海孜煤矿为例. 地质论评, 48: 96-106
[32]  李小明, 曹代勇, 占文峰. 2006. 北淮阳地区不同变形-变质煤的元素分布及其影响因素. 煤田地质与勘探, 34: 1-3
[33]  屈争辉. 2010. 构造煤结构及其对瓦斯特性的控制机理研究. 徐州: 中国矿业大学. 1-158
[34]  任德贻, 赵峰华, 代世峰, 等. 2006. 煤的微量元素地球化学. 北京: 科学出版社. 61-85
[35]  任德贻. 1996. 煤中矿物质. 见: 韩德馨, 主编. 中国煤岩学. 徐州: 中国矿业大学出版社. 67-77
[36]  唐修义, 黄文辉. 2004. 中国煤中微量元素. 北京: 商务印书馆. 3-11
[37]  王桂梁, 朱炎铭. 1988. 论煤层流变. 中国矿业学院学报, 3: 10-24
[38]  张玉贵, 张子敏, 曹运兴. 2007. 构造煤结构与瓦斯突出. 煤炭学报, 32: 281-284
[39]  张玉贵, 张子敏, 张小兵, 等. 2008. 构造煤演化的力化学作用机制. 中国煤炭地质, 20: 11-21
[40]  郑刘根, 刘桂建, 张浩原, 等. 2006. 淮北煤田二叠纪煤中稀土元素地球化学研究. 高校地质学报, 12: 41-52
[41]  Bou?ka V, Pe?ek J. 1999. Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite. Int J Coal Geol, 40: 211-235
[42]  Brownfield M E, Affolter R H, Cathcart J D, et al. 2005. Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. Int J Coal Geol, 63: 247-275
[43]  曹代勇, 张守仁, 任德贻. 2002. 构造变形对煤化作用进程的影响—以大别造山带北麓地区石炭纪含煤岩系为例. 地质论评, 48: 313-317
[44]  曹代勇, 李小明, 张守仁. 2006. 构造应力对煤化作用的影响—应力降解机制与应力缩聚机制. 中国科学D辑: 地球科学, 1: 59-68
[45]  侯泉林, 李会军, 范俊佳, 等. 2012. 构造煤结构与煤层气赋存研究进展. 中国科学: 地球科学, 10: 1487-1495
[46]  姜波, 琚宜文. 2004. 构造煤结构及其储层物性特征. 天然气工业, 24: 27-29
[47]  姜波, 秦勇, 范炳恒, 等. 2001. 淮北地区煤储层物性及煤层气勘探前景. 中国矿业大学学报, 30: 433-437
[48]  姜波, 秦勇, 金法礼. 1998. 高温高压实验变形煤XRD结构演化. 煤炭学报, 23: 188-193
[49]  琚宜文, 王桂梁, 姜波. 2003. 浅层次脆性变形域中煤层韧性剪切带微观分析. 中国科学D辑:地球科学, 7: 626-635

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133