全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

山西吕梁古元古代袁家村铁矿BIF稀土元素地球化学及其对大氧化事件的指示

DOI: 10.1007/s11430-014-4896-2, PP. 2389-2405

Keywords: 袁家村铁矿,BIF地球化学特征,大氧化事件,Mn的氢氧化物载体,沉淀机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

?华北克拉通是前寒武纪BIF的重要产区,袁家村铁矿位于山西吕梁地区,是国内疑似Superior型BIF的范例.BIF赋存于吕梁群下部袁家村组沉积岩系,前人根据上覆和下伏含火山岩地层的时代,推测袁家村组的形成时代为2.3~2.1Ga,晚于或在大氧化事件(GOE)发生的时间范围(2.4~2.2Ga)内.袁家村铁矿区BIF主要由半自形-它形粒状磁铁矿和石英组成,较少见其他矿物,变质程度较浅,为绿片岩相-低角闪岩相.该BIF的地球化学特征与Superior型BIF类似,经后太古宙平均页岩(PAAS)标准化后,La,Y和Eu元素的正异常显示成矿物质来源主要来自高温热液和海水,缺乏或仅有微量陆源碎屑的混染;稀土元素特征显示出部分Ce的正异常,较小的Y/Ho比值和较大的Ce异常,LREE/HREE((Pr/Yb)PAAS)比值范围,与古元古代晚期(<2.0Ga)世界典型铁建造基本一致,说明了吕梁地区2.3~2.1Ga古海洋为氧化还原状态分层的海洋.其原因推测与当时发生的大氧化事件有关,即大氧化事件造成上部氧化水体中Ce和Mn的氧化,在海水中存在Mn的氢氧化物载体,不同的氧化还原状态下这种载体的溶解和形成就会造成BIF特有的稀土元素特征.BIF的沉淀环境可能发生于氧化还原变层及其下部的还原水体中.

References

[1]  Bostrom K. 1973. The origin and fate of ferromanganoan active ridge sediments. Stock Contribut Geol, 27: 149-243
[2]  Byrne R, Sholkovitz E. 1996. Marine Chemistry and Geochemistry of the Lanthanides. Amsterdam: Elsevier. 497-593
[3]  Zhao G C, Wilde S A, Cawood P A, et al. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310: 37-53
[4]  Zhao G C, Wilde S A, Sun M, et al. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China orogen. Precambrian Res, 160: 213-226
[5]  Zhao G C, Wilde S A, Cawood P A, et al. 1998. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev, 40: 706-721
[6]  万渝生, 耿元生, 沈其韩, 等. 2000. 孔兹岩系—山西吕梁地区界河口群的年代和地球化学. 岩石学报, 16: 49-58
[7]  王长乐, 张连昌, 刘利, 等. 2011. BIF的形成时代及其研究方法. 矿物学报, 31: 480-482
[8]  王长乐, 张连昌, 刘利, 等. 2012. 国外前寒武纪铁建造的研究进展与有待深入探讨的问题. 矿床地质, 31: 1311-1325
[9]  伍家善, 耿元生, 沈其韩, 等. 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社. 192-211
[10]  姚培慧. 1993. 中国铁矿志. 北京: 冶金工业出版社. 1-662
[11]  于津海, 王德滋, 王赐银. 1997a. 山西吕梁群和其主变质作用的锆石U-Pb年龄. 地质论评, 43: 403-408
[12]  于津海, 王德滋, 王赐银. 1997b. 山西吕梁群早元古代双峰式火山岩地球化学特征及成因. 岩石学报, 13: 59-70
[13]  翟明国. 2004. 华北克拉通2.1~1.7Ga地质事件群的分解和构造意义探讨. 岩石学报, 20: 1341-1354
[14]  翟明国. 2011. 克拉通化与华北陆块的形成. 中国科学: 地球科学, 41: 1037-1046
[15]  赵振华. 2010. 条带状铁建造(BIF)与地球大氧化事件. 地学前缘, 17: 1-12
[16]  朱今初, 张富生. 1987. 山西袁家村矿区前寒武纪铁矿的形成条件. 矿床地质, 6: 11-21
[17]  Alexander B W, Bau M, Andersson P, et al. 2008. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim Cosmochim Acta, 72: 378-394
[18]  Bau M, Dulski P. 1999. Comparing yttrium and rare-earth in hydrothermal fluids from the Mid-Atlantic ridge: Implications for Y and REE behaviour during near vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol, 155: 77-90
[19]  Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res, 79: 37-55
[20]  Bau M, Dulski P. 1992. Small-scale variations of the rare earth element distribution in Precambrian iron formations. Eur J Mineral, 4: 1429-1433
[21]  Bau M, M?ller P and Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar Chem, 56: 123-131
[22]  Bau M. 1993. Effects of syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations. Eur J Mineral, 5: 257-267
[23]  Bau M. 1991. Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol, 93: 219-230
[24]  Bau M. 1999. Scavenging of dissolved yttrium and rare earths by precipitating Fe oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta, 63: 67-77
[25]  Bekker A, Holland H D, Wang P L, et al. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117-120
[26]  Bekker A, Slack J F, Planavsky N, et al. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol, 105: 467-508
[27]  Beukes N J, Klein C. 1990. Geochemistry and sedimentology of a facies transition-from microbanded to granular iron-formation-in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Res, 47: 99-139
[28]  Bilal B A. 1991. Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltammetry. Z Naturforsch, 46: 1108-1116
[29]  Bolhar R, Kamber B S, Moorbath S, et al. 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett, 222: 43-60
[30]  Bolhar R, Van Kranendonk M J. 2007. A non-marine depositional setting for the northern Fortescue group, Pilbara craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res, 155: 229-250
[31]  耿元生, 万渝生, 沈其韩, 等. 2000. 吕梁地区早前寒武纪主要地质事件的年代框架. 地质学报, 74: 216-223
[32]  耿元生, 万渝生, 杨崇辉. 2008. 中国古元古界建系综合研究报告——吕梁地区古元古代主要地质事件的厘定和古元古代的初步划见. 北京: 地质出版社. 515-533
[33]  耿元生, 杨崇辉, 宋彪, 等. 2004. 吕梁地区18亿年的后造山花岗岩: 同位素年代和地球化学制约. 高校地质学报, 10: 477-487
[34]  侯玉树, 赵广江, 杨永强, 等. 2006. 吕梁山古裂谷带演化及成矿制约研究. 吉林大学学报(地球科学版), 36: 15-18
[35]  李延河, 侯可军, 万德芳, 等. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋. 地质学报, 80: 1359-1373
[36]  李延河, 张增杰, 伍家善, 等. 2011. 冀东马兰庄条带状硅铁建造的变质时代及地质意义. 矿床地质, 30: 645-653
[37]  李志红, 朱祥坤, 唐索寒, 等. 2010. 冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义. 现代地质, 24: 840-846
[38]  李志红, 朱祥坤, 唐索寒. 2008. 鞍山-本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示. 岩石矿物学杂志, 27: 285-290
[39]  刘建忠, 张福勤, 欧阳自远, 等. 2001. 山西吕梁山界河口群变质基性火山岩的地球化学及年代学研究. 中国科学D辑: 地球科学, 31: 111-118
[40]  刘树文, 李秋根, 张立飞. 2009. 吕梁山前寒武纪野鸡山群火山岩的地质学, 地球化学及其构造意义. 岩石学报, 25: 547-560
[41]  卢保奇, 王赐银. 2003. 晋北娄烦吕梁群变质相带的划分及其成因研究. 地球学报, 24: 325-329
[42]  沈保丰, 宋亮生, 李华芝. 1982. 山西省岚县袁家村铁建造的沉积相和形成条件分析. 长春地质学院学报, 25: 31-51
[43]  沈保丰, 翟安民, 杨春亮. 2010. 古元古代-中国重要的成矿期. 地质调查与研究, 33: 241-256
[44]  沈其韩, 宋会侠, 赵子然. 2009. 山东韩旺新太古代条带状铁矿的稀土和微量元素特征. 地球学报, 30: 693-699
[45]  沈其韩. 1998. 华北地台早前寒武纪条带状铁英岩地质特征及形成的地质背景. 北京: 地质出版社. 1-30
[46]  汤好书, 陈衍景, 武广, 等. 2008. 辽北辽河群碳酸盐岩碳氧同位素特征及其地质意义. 岩石学报, 24: 129-138
[47]  Cloud P E. 1965. Significance of Gunflint (Precambrian) microflora-photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148: 27-35
[48]  Condie K C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem Geol, 104: 1-37
[49]  Dasgupta H, Sambasiva RaoV, Krishna C. 1999. Chemical environments of deposition of ancient iron-and manganese-rich sediments and cherts. Sediment Geol, 1999, 125: 83-98
[50]  De Carlo E H, Green W J. 2002. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim Cosmochim Acta, 66: 1323-1333
[51]  Dymek R F, Klein C. 1988. Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt West Greenland. Precambrian Res, 39: 247-302
[52]  German C R, Elderfield H. 1990. Application of the Ce-anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5: 823-833
[53]  González P D, Sato A M, Llambías E J, et al. 2009. Petrology and geochemistry of the banded iron formation in the Eastern Sierras Pampeanas of San Luis (Argentina): Implications for the evolution of the Nogolí Metamorphic Complex. J S Amer Earth Sci, 28: 89-112
[54]  Grauch R I. 1989. Rare earth elements in metamorphic rocks. Mineral Soc Amer, 21: 147-167
[55]  Gross G A. 1980. A classification of iron formations based on depositional environments. Can Mineral, 18: 215-222
[56]  Gross G A. 1996. Algoma-Type Previous Term Iron-Formation. Ottawa: British Columbia Ministry of Employment and Investment Open File. 25-28
[57]  Guo J H, O’Brien P J, Zhai M G. 2002. High-pressure granulites in the Sangan area, North China Craton: Metamorphic evolution, P-T paths and geotectonic significance. J Metamorph Geol, 20: 741-756
[58]  Guo J H, Sun M, Zhai M G. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 24: 629-642
[59]  Hamade T, Konhauser K, Raiswell R, et al. 2003. Using Ge/Si ratio to decouple iron and silica fluxes in Precambrian banded iron formations. Geology, 31: 35-38
[60]  Hannah J L, Bekker A, Stein H J, et al. 2004. Primitive Os and 2316Ma age for marine shale: Implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett, 225: 43-52
[61]  Hatton O, Davidson G. 2004. Soldiers Cap Group iron-formations, Mt. Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Aust J Earth Sci, 51: 85-106
[62]  Henderson P. 1984. General Geochemical Properties and Abundances of the Rare Earth Elements. Amsterdam: Elsevier. 1-32
[63]  Holland H D. 1984. The Chemical Evolution of the Atmosphere and Oceans. New York: Princeton University Press. 1-582
[64]  Huston D L, Logan G A. 2004. Barite, BIFs and bugs: Evidence for the evolution of the Earth′s early hydrosphere. Earth Planet Sci Lett, 220: 41-55
[65]  Isley A E, Abbott D H. 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res, 104: 15461-15477
[66]  Isley A E. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol, 103: 169-185
[67]  James H L. 1954. Sedimentary facies of iron-formation. Econ Geol, 49: 235-293
[68]  Kato Y, Ohta I, Tsunematsu T, et al. 1998. Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and plate tectonics. Geochim Cosmochim Acta, 1998, 62: 3475-3497
[69]  Kholodov V N, Butuzova G Y. 2001. Problems of iron and phosphorus geochemistry in the Precambrian. Lithol Miner Resour, 36: 291-302
[70]  Klein C, Beukes N J. 1989. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ Geol, 84: 1733-1774
[71]  Klein C, Beukes N J. 1992. Time Distribution, Stratigraphy, Sedimentologic Setting, and Geochemistry of Precambrian Iron-Formations. Cambridge: Cambridge University Press. 139-146
[72]  Klein C. 1973. Changes in mineral assemblages with metamorphism of some banded Precambrian iron-formations. Econ Geol, 68: 1075-1088
[73]  Koeppenkastrop D, De Carlo E H. 1992. Sorption of rare-earth elements from seawater onto synthetic mineral particles—An experimental approach. Chem Geol, 95: 251-263
[74]  Konhauser K O, Amskold L, Lalonde S V, et al. 2007. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet Sci Lett, 258: 87-100
[75]  Konhauser K O, Hamade T, Raiswell R, et al. 2002. Could bacteria have formed the Precambrian banded Fe formations? Geology, 30: 1079-1082
[76]  Konhauser K O, Pecoits E, Lalonde S V, et al. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750-753
[77]  Kusky T M, Li J H. 2003. Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci, 22: 383-397
[78]  Li Y L, Konhauser K O, Cole D R, et al. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39: 707-710
[79]  Li Y L. 2012. Hexagonal Platelet-like Magnetite as a Biosignature of Thermophilic Iron-Reducing Bacteria and Its Applications to the Exploration of the Modern Deep, Hot Biosphere and the Emergence of Iron-Reducing Bacteria in Early Precambrian Oceans. Astrobiology, 12: 1100-1108
[80]  Liu C H, Zhao G C, Sun M, et al. 2011. U-Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the Lüliang Complex: Constraints on the timing of collision between the Eastern and Western Blocks, North China Craton. Sediment Geol, 236: 129-140
[81]  Liu S W, Zhang J, Li Q G, et al. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Res, 222: 173-190
[82]  MacRae N D, Nesbitt H W, Kronberg B I. 1992. Development of a positive Eu anomaly during diagenesis. Earth Planet Sci Lett, 109: 585-591
[83]  Manikyamba C, Balaram V, Naqvi S M. 1993. Geochemical signatures of polygenetic origin of a banded-iron formation (BIF) of the Archean Sandur greenstone belt (schist belt) Karnataka nucleus, India. Precambrian Res, 61: 137-164
[84]  Manikyamba C, Naqvi S. 1995. Geochemistry of Fe-Mn formations of the Archaean Sandur schist belt, India-mixing of clastic and chemical processes at a shallow shelf. Precambrian Res, 72: 69-95
[85]  McLennan S B. 1989. Rare Earth Elements in Sedimentary Rocks Influence of Provenance and Sedimentary Processes. Washington: Society of America. 169-200
[86]  Morris R C. 1993. Genetic moelling for banded iron-formation of the Hamersley group, Pilbara craton, Western Australia. Precambrian Res, 60: 243-286
[87]  Murray R, Brink M, Gerlach D, et al. 1991. Rare earth, major and trace elements in chert from the Franciscan complex and Monterey group, California: Assessing REE sources to fine grained marine sediments. Geochim Cosmochim Acta, 55: 1875-1895
[88]  Nozaki Y, Zhang J, Amakawa H. 1997. The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett, 148: 329-340
[89]  Pecoits E, Gingras M K, Barley M E, et al. 2009. Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Res, 172: 163-187
[90]  Pichler T, Veizer J, Hall G E M. 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar Chem, 64: 229-252
[91]  Planavsky N, Bekker A, Rouxel O J, et al. 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta, 74: 6387-6405
[92]  Shimizu H, Umemotto N, Masuda A, et al. 1990. Sources of iron-formations in the Archean Isua and Malene supracrustals West Greenland: Evidence from La-Ce and Sm-Nd isotopic data and REE abundances. Geochim Cosmochim Acta, 54: 1147-1154
[93]  Sholkovitz E R, Shaw T, Schneider D L. 1992. The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochim Cosmochim Acta, 56: 3389-3402
[94]  Spier C A, de Oliveira S M B, Sial A N, et al. 2007. Geochemistry and genesis of the banded iron formations of the Cauê formation, Quadrilátero Ferr?fero, Minas Gerais, Brazil. Precambrian Res, 152: 170-206
[95]  Taylor D, Dalstra H J, Harding A E, et al. 2001. Genesis of the high-grade hematite orebodies of the Hamerley province Western Australia. Econ Geol, 96: 837-873
[96]  Trendall A F. 1983. Iron-Formation: Facts and Problems. Amsterdam: Elsevier. 1-11
[97]  Wan Y S, Song B, Liu D Y, et al. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res, 149: 249-271
[98]  Wheat C G, Mottl M J, Rudnicki M. 2002. Trace element and REE composition of a low-Temperature ridge-flank hydrothermal spring. Geochim Cosmochim Acta, 66: 3693-3705
[99]  Wonder J, Spry P, Windom K. 1988. Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia. Econ Geol, 83: 1070-1081
[100]  Xia X P, Sun M, Zhao G C, et al. 2009. U-Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications. Geol Mag, 146: 701-716
[101]  Zhai M G, Santosh M. 2011. The early Precambrian odyssey of north China craton: A synoptic overview. Gondwana Res, 20: 6-25
[102]  Zhang L C, Zhai M G, Zhang X J, et al. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei province: Constraints from geochemistry and SIMS Zircon U-Pb dating. Precambrian Res, 222: 325-338
[103]  Zhang X J, Zhang L C, Xiang P, et al. 2011. Zircon U-Pb age, Hf isotopes and geochemistry for Shuichang banded iron formation, North China: Constraints on the ore-forming age, materials and tectonic setting. Gondwana Res, 20: 137-148
[104]  Zhao G C, Cawood P A, Wilde S A, et al. 2001b. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. J Petrol, 42: 1141-1170
[105]  Zhao G C, Cawood P A, Wilde S A, et al. 2000. Metamorphism of basement rocks in the central zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res, 103: 55-88
[106]  Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177-202
[107]  Zhao G C, Wilde S A, Cawood P A, et al. 2001a. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45-73

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133