Bostrom K. 1973. The origin and fate of ferromanganoan active ridge sediments. Stock Contribut Geol, 27: 149-243
[2]
Byrne R, Sholkovitz E. 1996. Marine Chemistry and Geochemistry of the Lanthanides. Amsterdam: Elsevier. 497-593
[3]
Zhao G C, Wilde S A, Cawood P A, et al. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310: 37-53
[4]
Zhao G C, Wilde S A, Sun M, et al. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China orogen. Precambrian Res, 160: 213-226
[5]
Zhao G C, Wilde S A, Cawood P A, et al. 1998. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev, 40: 706-721
Alexander B W, Bau M, Andersson P, et al. 2008. Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim Cosmochim Acta, 72: 378-394
[18]
Bau M, Dulski P. 1999. Comparing yttrium and rare-earth in hydrothermal fluids from the Mid-Atlantic ridge: Implications for Y and REE behaviour during near vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem Geol, 155: 77-90
[19]
Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res, 79: 37-55
[20]
Bau M, Dulski P. 1992. Small-scale variations of the rare earth element distribution in Precambrian iron formations. Eur J Mineral, 4: 1429-1433
[21]
Bau M, M?ller P and Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar Chem, 56: 123-131
[22]
Bau M. 1993. Effects of syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations. Eur J Mineral, 5: 257-267
[23]
Bau M. 1991. Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol, 93: 219-230
[24]
Bau M. 1999. Scavenging of dissolved yttrium and rare earths by precipitating Fe oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta, 63: 67-77
[25]
Bekker A, Holland H D, Wang P L, et al. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117-120
[26]
Bekker A, Slack J F, Planavsky N, et al. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol, 105: 467-508
[27]
Beukes N J, Klein C. 1990. Geochemistry and sedimentology of a facies transition-from microbanded to granular iron-formation-in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Res, 47: 99-139
[28]
Bilal B A. 1991. Thermodynamic study of Eu3+/Eu2+ redox reaction in aqueous solutions at elevated temperatures and pressures by means of cyclic voltammetry. Z Naturforsch, 46: 1108-1116
[29]
Bolhar R, Kamber B S, Moorbath S, et al. 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett, 222: 43-60
[30]
Bolhar R, Van Kranendonk M J. 2007. A non-marine depositional setting for the northern Fortescue group, Pilbara craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res, 155: 229-250
Cloud P E. 1965. Significance of Gunflint (Precambrian) microflora-photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148: 27-35
[48]
Condie K C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem Geol, 104: 1-37
[49]
Dasgupta H, Sambasiva RaoV, Krishna C. 1999. Chemical environments of deposition of ancient iron-and manganese-rich sediments and cherts. Sediment Geol, 1999, 125: 83-98
[50]
De Carlo E H, Green W J. 2002. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim Cosmochim Acta, 66: 1323-1333
[51]
Dymek R F, Klein C. 1988. Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt West Greenland. Precambrian Res, 39: 247-302
[52]
German C R, Elderfield H. 1990. Application of the Ce-anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5: 823-833
[53]
González P D, Sato A M, Llambías E J, et al. 2009. Petrology and geochemistry of the banded iron formation in the Eastern Sierras Pampeanas of San Luis (Argentina): Implications for the evolution of the Nogolí Metamorphic Complex. J S Amer Earth Sci, 28: 89-112
[54]
Grauch R I. 1989. Rare earth elements in metamorphic rocks. Mineral Soc Amer, 21: 147-167
[55]
Gross G A. 1980. A classification of iron formations based on depositional environments. Can Mineral, 18: 215-222
[56]
Gross G A. 1996. Algoma-Type Previous Term Iron-Formation. Ottawa: British Columbia Ministry of Employment and Investment Open File. 25-28
[57]
Guo J H, O’Brien P J, Zhai M G. 2002. High-pressure granulites in the Sangan area, North China Craton: Metamorphic evolution, P-T paths and geotectonic significance. J Metamorph Geol, 20: 741-756
[58]
Guo J H, Sun M, Zhai M G. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 24: 629-642
[59]
Hamade T, Konhauser K, Raiswell R, et al. 2003. Using Ge/Si ratio to decouple iron and silica fluxes in Precambrian banded iron formations. Geology, 31: 35-38
[60]
Hannah J L, Bekker A, Stein H J, et al. 2004. Primitive Os and 2316Ma age for marine shale: Implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett, 225: 43-52
[61]
Hatton O, Davidson G. 2004. Soldiers Cap Group iron-formations, Mt. Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Aust J Earth Sci, 51: 85-106
[62]
Henderson P. 1984. General Geochemical Properties and Abundances of the Rare Earth Elements. Amsterdam: Elsevier. 1-32
[63]
Holland H D. 1984. The Chemical Evolution of the Atmosphere and Oceans. New York: Princeton University Press. 1-582
[64]
Huston D L, Logan G A. 2004. Barite, BIFs and bugs: Evidence for the evolution of the Earth′s early hydrosphere. Earth Planet Sci Lett, 220: 41-55
[65]
Isley A E, Abbott D H. 1999. Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res, 104: 15461-15477
[66]
Isley A E. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol, 103: 169-185
[67]
James H L. 1954. Sedimentary facies of iron-formation. Econ Geol, 49: 235-293
[68]
Kato Y, Ohta I, Tsunematsu T, et al. 1998. Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and plate tectonics. Geochim Cosmochim Acta, 1998, 62: 3475-3497
[69]
Kholodov V N, Butuzova G Y. 2001. Problems of iron and phosphorus geochemistry in the Precambrian. Lithol Miner Resour, 36: 291-302
[70]
Klein C, Beukes N J. 1989. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ Geol, 84: 1733-1774
[71]
Klein C, Beukes N J. 1992. Time Distribution, Stratigraphy, Sedimentologic Setting, and Geochemistry of Precambrian Iron-Formations. Cambridge: Cambridge University Press. 139-146
[72]
Klein C. 1973. Changes in mineral assemblages with metamorphism of some banded Precambrian iron-formations. Econ Geol, 68: 1075-1088
[73]
Koeppenkastrop D, De Carlo E H. 1992. Sorption of rare-earth elements from seawater onto synthetic mineral particles—An experimental approach. Chem Geol, 95: 251-263
[74]
Konhauser K O, Amskold L, Lalonde S V, et al. 2007. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet Sci Lett, 258: 87-100
[75]
Konhauser K O, Hamade T, Raiswell R, et al. 2002. Could bacteria have formed the Precambrian banded Fe formations? Geology, 30: 1079-1082
[76]
Konhauser K O, Pecoits E, Lalonde S V, et al. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750-753
[77]
Kusky T M, Li J H. 2003. Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci, 22: 383-397
[78]
Li Y L, Konhauser K O, Cole D R, et al. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39: 707-710
[79]
Li Y L. 2012. Hexagonal Platelet-like Magnetite as a Biosignature of Thermophilic Iron-Reducing Bacteria and Its Applications to the Exploration of the Modern Deep, Hot Biosphere and the Emergence of Iron-Reducing Bacteria in Early Precambrian Oceans. Astrobiology, 12: 1100-1108
[80]
Liu C H, Zhao G C, Sun M, et al. 2011. U-Pb and Hf isotopic study of detrital zircons from the Yejishan Group of the Lüliang Complex: Constraints on the timing of collision between the Eastern and Western Blocks, North China Craton. Sediment Geol, 236: 129-140
[81]
Liu S W, Zhang J, Li Q G, et al. 2012. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Lüliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton. Precambrian Res, 222: 173-190
[82]
MacRae N D, Nesbitt H W, Kronberg B I. 1992. Development of a positive Eu anomaly during diagenesis. Earth Planet Sci Lett, 109: 585-591
[83]
Manikyamba C, Balaram V, Naqvi S M. 1993. Geochemical signatures of polygenetic origin of a banded-iron formation (BIF) of the Archean Sandur greenstone belt (schist belt) Karnataka nucleus, India. Precambrian Res, 61: 137-164
[84]
Manikyamba C, Naqvi S. 1995. Geochemistry of Fe-Mn formations of the Archaean Sandur schist belt, India-mixing of clastic and chemical processes at a shallow shelf. Precambrian Res, 72: 69-95
[85]
McLennan S B. 1989. Rare Earth Elements in Sedimentary Rocks Influence of Provenance and Sedimentary Processes. Washington: Society of America. 169-200
[86]
Morris R C. 1993. Genetic moelling for banded iron-formation of the Hamersley group, Pilbara craton, Western Australia. Precambrian Res, 60: 243-286
[87]
Murray R, Brink M, Gerlach D, et al. 1991. Rare earth, major and trace elements in chert from the Franciscan complex and Monterey group, California: Assessing REE sources to fine grained marine sediments. Geochim Cosmochim Acta, 55: 1875-1895
[88]
Nozaki Y, Zhang J, Amakawa H. 1997. The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett, 148: 329-340
[89]
Pecoits E, Gingras M K, Barley M E, et al. 2009. Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Res, 172: 163-187
[90]
Pichler T, Veizer J, Hall G E M. 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Mar Chem, 64: 229-252
[91]
Planavsky N, Bekker A, Rouxel O J, et al. 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta, 74: 6387-6405
[92]
Shimizu H, Umemotto N, Masuda A, et al. 1990. Sources of iron-formations in the Archean Isua and Malene supracrustals West Greenland: Evidence from La-Ce and Sm-Nd isotopic data and REE abundances. Geochim Cosmochim Acta, 54: 1147-1154
[93]
Sholkovitz E R, Shaw T, Schneider D L. 1992. The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochim Cosmochim Acta, 56: 3389-3402
[94]
Spier C A, de Oliveira S M B, Sial A N, et al. 2007. Geochemistry and genesis of the banded iron formations of the Cauê formation, Quadrilátero Ferr?fero, Minas Gerais, Brazil. Precambrian Res, 152: 170-206
[95]
Taylor D, Dalstra H J, Harding A E, et al. 2001. Genesis of the high-grade hematite orebodies of the Hamerley province Western Australia. Econ Geol, 96: 837-873
[96]
Trendall A F. 1983. Iron-Formation: Facts and Problems. Amsterdam: Elsevier. 1-11
[97]
Wan Y S, Song B, Liu D Y, et al. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res, 149: 249-271
[98]
Wheat C G, Mottl M J, Rudnicki M. 2002. Trace element and REE composition of a low-Temperature ridge-flank hydrothermal spring. Geochim Cosmochim Acta, 66: 3693-3705
[99]
Wonder J, Spry P, Windom K. 1988. Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia. Econ Geol, 83: 1070-1081
[100]
Xia X P, Sun M, Zhao G C, et al. 2009. U-Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications. Geol Mag, 146: 701-716
[101]
Zhai M G, Santosh M. 2011. The early Precambrian odyssey of north China craton: A synoptic overview. Gondwana Res, 20: 6-25
[102]
Zhang L C, Zhai M G, Zhang X J, et al. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei province: Constraints from geochemistry and SIMS Zircon U-Pb dating. Precambrian Res, 222: 325-338
[103]
Zhang X J, Zhang L C, Xiang P, et al. 2011. Zircon U-Pb age, Hf isotopes and geochemistry for Shuichang banded iron formation, North China: Constraints on the ore-forming age, materials and tectonic setting. Gondwana Res, 20: 137-148
[104]
Zhao G C, Cawood P A, Wilde S A, et al. 2001b. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. J Petrol, 42: 1141-1170
[105]
Zhao G C, Cawood P A, Wilde S A, et al. 2000. Metamorphism of basement rocks in the central zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res, 103: 55-88
[106]
Zhao G C, Sun M, Wilde S A, et al. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 136: 177-202
[107]
Zhao G C, Wilde S A, Cawood P A, et al. 2001a. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45-73