全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

滇西哀牢山地区晚三叠世高εNd(t)-εHf(t)花岗岩的构造指示

DOI: 10.1007/s11430-014-4854-z, PP. 2373-2388

Keywords: 高εNd(t)-εHf(t)花岗岩,晚三叠世,碰撞后,哀牢山,陆壳增生

Full-Text   Cite this paper   Add to My Lib

Abstract:

?高εNd(t)-εHf(t)花岗岩是研究陆壳生长的有力证据.哀牢山构造带中段滑石板花岗岩样品激光锆石U-Pb年代学、Lu-Hf同位素和全岩主微量元素、Sr-Nd同位素分析结果表明其为高硅(SiO2=72.66wt%~73.70wt%)、低镁(Mg#=0.28~0.34)、弱过铝质(A/CNK=1.01~1.05)的高钾钙碱性I型花岗岩,具有正的εNd(t)值(3.28~3.55).其中两个样品的锆石206Pb/238U加权平均年龄分别为(229.9±2.0)和(229.3±2.3)Ma,对应的εHf(t)分别为9.8~12.6和8.4~13.1.229Ma代表了花岗岩结晶年龄,结合对近年来国内外关于哀牢山深变质杂岩的年代学资料的统计分析,可以认为哀牢山深变质岩并非前人所认为的是扬子地台前寒武纪结晶基底的一部分,而是由中元古代、新元古代、海西早期、印支期和喜马拉雅期等不同时代岩石组成的变质杂岩.滑石板高εHf(t)花岗岩的形成经历了两个阶段:二叠纪受到流体、熔体交代的地幔楔部分熔融底侵到下地壳形成岛弧下地壳;晚三叠世碰撞后阶段上涌的软流圈地幔热导致新生下地壳重熔.滑石板高εNd(t)-εHf(t)花岗岩记录了哀牢山构造带经历过的一次地壳增生事件.

References

[1]  刘汇川, 王岳军, 蔡永丰, 等. 2013. 哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究. 大地构造与成矿学, 37: 87-98
[2]  刘俊来, 唐渊, 宋志杰, 等. 2011. 滇西哀牢山构造带: 结构与演化. 吉林大学学报(地球科学版), 41: 1285-1303
[3]  刘俊来, 王安建, 曹淑云, 等. 2008. 滇西点苍山杂岩中混合岩的地质年代学分析及其区域构造内涵. 岩石学报, 24: 0413-0420
[4]  李献华, 祁昌实, 刘颖, 等. 2005. 扬子块体西缘新元古代双峰式火山岩成因:Hf同位素和Fe/Mn新制约. 科学通报, 50: 2155-2160
[5]  刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25: 552-558
[6]  李再会, 林仕良, 丛峰, 等. 2010. 滇西腾-梁地块印支造山事件—花岗岩的锆石U-Pb年代学和岩石学证据. 岩石矿物学杂志, 29: 298-312
[7]  彭头平, 王岳军, 范蔚茗, 等. 2006. 澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义. 中国科学D辑: 地球科学, 36: 123-132
[8]  戚学祥, 朱路华, 李化启, 等. 2010. 青藏高原东缘哀牢山-金沙江构造带糜棱状花岗岩的LA-ICP-MS U-Pb定年及其构造意义. 地质学报, 84: 357-369
[9]  沙绍礼, 包俊跃, 金亚昌, 等. 1999. 点苍山变质带同位素年代学研究新进展. 云南地质, 18: 63-36
[10]  王义昭, 丁俊. 1996. 云南哀牢山中深变质岩系构造变形特征及演变. 特提斯地质, 20: 52-69
[11]  魏启荣, 沈上越. 1995. 哀牢山北段老王寨-浪泥塘一带蛇绿岩的形成环境. 特提斯地质, 19: 57-70
[12]  魏启荣, 沈上越. 1997. "三江"地区哀牢山西侧三类弧火山岩特征. 地质科技情报, 16: 13-18
[13]  吴福元, 李献华, 郑永飞, 等. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23: 185-220
[14]  谢烈文, 张艳斌, 张辉煌, 等. 2008. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定. 科学通报, 53: 220-228
[15]  云南省地矿局. 1990. 云南省区域地质志. 北京: 地质出版社. 178-352
[16]  翟明国, 从柏林, 乔广生, 等. 1990. 中国滇西南造山带变质岩的Sm-Nd和Rb-Sr同位素年代学. 岩石学报, 6: 1-11
[17]  张旗, 周德进, 赵大升, 等. 1996. 滇西古特提斯造山带的威尔逊旋回: 岩浆活动记录和深部过程讨论. 岩石学报, 12: 17-29
[18]  张玉泉, 夏斌, 梁华英, 等. 2004. 云南大平糜棱岩化碱性花岗岩的锆石特征及其地质意义. 高校地质学报, 10: 378-384
[19]  钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社. 1-231
[20]  邹日, 朱炳泉, 孙大中, 等. 1997. 红河成矿带壳幔演化与成矿作用的年代学研究. 地球化学, 26: 46-56
[21]  Albarede F. 1998. The growth of continental crust. Tectonophysics, 296: 1-14
[22]  从柏林, 吴根耀, 张旗, 等. 1993. 中国滇西古特提斯构造带岩石大地构造演化. 中国科学B辑, 23: 1201-1207
[23]  董云鹏, 朱炳泉, 常向阳, 等. 2000. 哀牢山缝合带中两类火山岩地球化学特征及其构造意义. 地球化学, 29: 6-13
[24]  范蔚茗, 彭头平, 王岳军. 2009. 滇西古特提斯俯冲-碰撞过程的岩浆作用记录. 地学前缘, 16: 291-302
[25]  高睿, 肖龙, 何琦, 等. 2010. 滇西维西-德钦一带花岗岩年代学、地球化学和岩石成因. 地球科学, 35: 186-200
[26]  简平, 汪啸风, 何龙清, 等. 1998a. 中国西南哀牢山蛇绿岩同位素地质年代学及大地构造意义. 华南地质与矿产, 1: 1-11
[27]  简平, 汪啸风, 何龙清, 等. 1998b. 云南新平县双沟蛇绿岩U-Pb年代学初步研究. 岩石学报, 14: 207-211
[28]  李宝龙, 季建清, 付孝悦, 等. 2008. 滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义. 岩石学报, 24: 2322-2330
[29]  刘翠, 邓晋福, 刘俊来, 等. 2011. 哀牢山构造岩浆带晚二叠世-早三叠世火山岩特征及其构造环境. 岩石学报, 27: 3590-3602
[30]  Allegre C J, Othman D B. 1980. Nd-Sr isotopic relationship in granitoid rocks and continental-crust development-a chemical approach to orogenesis. Nature, 286: 335-342
[31]  Amelin Y, Lee D C, Halliday A N, et al. 1999. Nature of the Earth′s earliest crust from hafnium isotopes in single detrital zircons. Nature, 399: 252-255
[32]  Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report Pb-204. Chem Geol, 192: 59-79
[33]  Atherton M P, Ghani A A. 2002. Slab breakoff: A model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos, 62: 65-85
[34]  Balykin P A, Polyakov G V, Izokh A E, et al. 2010. Geochemistry and petrogenesis of Permian ultramafic-mafic complexes of the Jinping-Song Da rift (southeastern Asia). Russ Geol Geophys, 51: 611-624
[35]  Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46: 605-626
[36]  Barth A P, Wooden J L, Tosdal R M, et al. 1995. Crustal contamination in the petrogenesis of a calc-alkalic rock series-Josephine Mountain intrusion, California. Geol Soc Am Bull, 107: 201-212
[37]  Blichert T J, Chauvel C, Albarede F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multiple collector ICP-MS. Contrib Mineral Petrol, 127: 248-260
[38]  Cao S Y, Liu J L, Leiss B, et al. 2011. Oligo-Miocene shearing along the Ailao Shan-Red River shear zone: Constraints from structural analysis and zircon U/Pb geochronology of magmatic rocks in the Diancang Shan massif, SE Tibet, China. Gondwana Res, 19: 975-993
[39]  Cao S Y, Liu J L, Leiss B, et al. 2012. Initiation of left-lateral deformation along the Ailao Shan-Red River shear zone: New microstructural, textural, and geochronological constraints from the Diancang Shan metamorphic massif, SW Yunnan, China. Int Geol Rev, 54: 348-367
[40]  Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46: 535-551
[41]  Chen B, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochim Cosmochim Acta, 69: 1307-1320
[42]  Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin of A-type Granites with particular reference to southeastern Australia. Contrib Mineral Petrol, 80: 189-200
[43]  Darbyshire D P F, Shepherd T J. 1994. Nd and Sr isotope constraints on the origin of the Cornubian batholith, Sw England. J Geol Soc London, 151: 795-802
[44]  Fan W M, Wang Y J, Zhang A M, et al. 2010. Permian arc-back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos, 119: 553-568
[45]  Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol, 154: 429-437
[46]  Geng H Y, Sun M, Yuan C, et al. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chem Geol, 266: 364-389
[47]  Griffin W L, Belousova E A, Shee S R, et al. 2004. Archean crustal evolution in the northern Yilgam Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Res, 131: 231-282
[48]  Gunnarsson B, Marsh B D, Taylor H P. 1998. Generation of Icelandic rhyolites: Silicic lavas from the Torfajokull central volcano. J Volcanol Geoth Res, 83: 1-45
[49]  Healy B, Collins W J, Richards S W. 2004. A hybrid origin for Lachlan S-type granites: The Murrumbidgee batholith example. Lithos, 78: 197-216
[50]  Hineab R, Williamscd I S, Chappelle B W, et al. 1978. Contrasts between I- and S-type granitoids of the Kosciusko batholith. J Geol Soc Aust, 25: 219-234
[51]  Jackson S E, Pearson N J, Griffin W L, et al. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol, 211: 47-69
[52]  Jian P, Liu D Y, Kroner A, et al. 2009a. Devonian to Permian plate tectonic cycle of the Paleo-Tethys orogen in southwest China (I): Geochemistry of ophiolites, arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113: 748-766
[53]  Jian P, Liu D Y, Kroner A, et al. 2009b. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113: 767-784
[54]  Lepvrier C, Maluski H, Van Tich V, et al. 2004. The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics, 393: 87-118
[55]  Lepvrier C, Maluski H, Van Vuong N, et al. 1997. Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) Ar-40-Ar-39 Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics, 283: 105-127
[56]  Liew T C, Hofmann A W. 1988. Precambrian crustal components, plutonic associations, plate environment of the hercynian fold belt of Central-Europe - indications from a Nd and Sr Isotopic Study. Contrib Mineral Petrol, 98: 129-138
[57]  Lin T H, Chung S L, Chiu H Y, et al. 2012. Zircon U-Pb and Hf isotope constraints from the Ailao Shan-Red River shear zone on the tectonic and crustal evolution of southwestern China. Chem Geol, 291: 23-37
[58]  Liu J L, Tang Y, Tran M D, et al. 2012. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. J Asian Earth Sci, 47: 231-251
[59]  Ludwig K R. 2001. Sqiud 1.02: A User Manual. Berkeley: Berkeley Geochronological Center Special Publication. 1-219
[60]  Maluski H, Lepvrier C, Leyreloupa A, et al. 2005. 40Ar-39Ar geochronology of the charnockites and granulites of the Kan Nack complex, Kon Tum Massif, Vietnam. J Asian Earth Sci, 25: 653-677
[61]  Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia. J Asian Earth Sci, 20: 551-566
[62]  Metcalfe I. 2006. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context. Gondwana Res, 9: 24-46
[63]  Nagy E A, Maluski H, Lepvrier C, et al. 2001. Geodynamic significance of the Kontum massif in central Vietnam: Composite (40)Ar/(39)Ar and U-Pb ages from Paleozoic to Triassic. J Geol, 109: 755-770
[64]  Owada M, Osanai Y, Hokada T, et al. 2006. Timing of metamorphism and formation of garnet granite in the Kontum Massif, central Vietnam: Evidence from monazite EMP dating. J Mine Petrol Sci, 101: 324-328
[65]  Owada M, Osanai Y, Nakano N, et al. 2007. Crustal anatexis and formation of two types of granitic magmas in the Kontum massif, central Vietnam: Implications for magma processes in collision zones. Gondwana Res, 12: 428-437
[66]  Peccerillo A, Barberio M R, Yirgu G, et al. 2003. Relationships between mafic and peralkaline silicic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol, 44: 2003-2032
[67]  Qi X X, Zeng L S, Zhu L H, et al. 2012. Zircon U-Pb and Lu-Hf isotopic systematics of the Daping plutonic rocks: Implications for the Neoproterozoic tectonic evolution of the northeastern margin of the Indochina block, Southwest China. Gondwana Res, 21: 180-193
[68]  Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32-kbar—Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891-931
[69]  Roberts M P, Clemens J D. 1993. Origin of high-potassium, calc-alkaline, I-Type granitoids. Geology, 21: 825-828
[70]  Rudnick R L. 1995. Making continental-crust. Nature, 378: 571-578
[71]  Scherer E, Munker C, Mezger K. 2001. Calibration of the lutetium-hafnium clock. Science, 293: 683-687
[72]  Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and process. Geol Soc Spec Publ London, 42: 313-345
[73]  Tang G J, Wang Q, Wyman D A, et al. 2012a. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region, NW China. Lithos, 128: 73-83
[74]  Tang G J, Wang Q, Wyman D A, et al. 2012b. Late Carboniferous high epsilon (Nd)(t)-epsilon (Hf)(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth. Lithos, 140: 86-102
[75]  Tang G J, Wyman D A, Wang Q, et al. 2012c. Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth Planet Sci Lett, 329: 84-96
[76]  Vervoort J D, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta, 63: 533-556
[77]  Wang C Y, Zhou M F, Keays R R. 2006. Geochemical constraints on the origin of the Permian Baimazhai mafic-ultramafic intrusion, SW China. Contrib Mineral Petrol, 152: 309-321
[78]  Wang C Y, Zhou M F, Qi L. 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China) Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. Chem Geol, 243: 317-343
[79]  Wang Q, Chung S L, Li X H, et al. 2012. Crustal melting and flow beneath Northern Tibet: Evidence from Mid-Miocene to quaternary strongly peraluminous rhyolites in the southern Kunlun Range. J Petrol, 53: 2523-2566
[80]  Wang X D, Shi G R, Sugiyama T. 2002. Permian of West Yunnan, Southwest China: A biostratigraphic synthesis. J Asian Earth Sci, 20: 647-656
[81]  Wang X F, Metcalfe I, Jian P, et al. 2000. The Jinshajiang-Ailaoshan Suture Zone, China: Tectonostratigraphy, age and evolution. J Asian Earth Sci, 18: 675-690
[82]  Wang Y J, Zhang A M, Fan W M, et al. 2010. Petrogenesis of late Triassic post-collisional basaltic rocks of the Lancangjiang tectonic zone, southwest China, and tectonic implications for the evolution of the eastern Paleotethys Geochronological and geochemical constraints. Lithos, 120: 529-546
[83]  Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol, 151: 413-433
[84]  Wu F Y, Yang Y H, Xie L W, et al. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 234: 105-126
[85]  Xu J F, Castillo P R. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics, 393: 9-27
[86]  Yang J H, Wu F Y, Shao J A, et al. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth Planet Sci Lett, 246: 336-352
[87]  Yang J H, Wu F Y, Wilde S A, et al. 2007. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol, 153: 177-190
[88]  Yuan H L, Gao S, Liu X M, et al. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res, 28: 353-370
[89]  Yumul G P, Zhou M F, Wang C Y, et al. 2008. Geology and geochemistry of the Shuanggou ophiolite (Ailao Shan ophiolitic belt), Yunnan Province, SW China: Evidence for a slow-spreading oceanic basin origin. J Asian Earth Sci, 32: 385-395
[90]  Zhu J J, Hu R Z, Bi X W, et al. 2011. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean. Lithos, 126: 248-264
[91]  Zi J W, Cawood P A, Fan W M, et al. 2012a. Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic melange, southwest China, and implications for the Paleo-Tethys. Tectonics, 31: 1-18
[92]  Zi J W, Cawood P A, Fan W M, et al. 2012b. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos, 140: 166-182
[93]  Zi J W, Cawood P A, Fan W M, et al. 2012c. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos, 144: 145-160
[94]  Zi J W, Cawood P A, Fan W M, et al. 2013. Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys. Am J Sci, 313: 81-112

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133