全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种包覆颗粒沉积新类型:鲕状泉华

DOI: 10.1007/s11430-014-4921-5, PP. 2406-2418

Keywords: 羌塘盆地,温泉地堑,鲕状泉华,包覆颗粒,核形石

Full-Text   Cite this paper   Add to My Lib

Abstract:

?包覆颗粒(以鲕粒为典型代表)作为一种特殊的沉积颗粒类型,以其特殊组构及长达两个世纪的成因理论演变著称于世.形成包覆颗粒的主导因素主要涵盖:微生物活动域、化学沉淀作用、水动力环境及地形条件、充足的核心物质补给、埋藏条件和水介质中的腐植酸条件等.而包覆颗粒成因理论发展至今,单因素理论似乎已经无法合理阐述包覆颗粒皮层沉淀物的精确形成,本文试图在传统的研究方法基础之上提出一种新的研究方向.羌塘东北缘的温泉地区,如同巴哈马群岛一样,是全世界包覆颗粒正在发育的几个少数地区之一,更是研究包覆颗粒及热泉沉积难得的"天然实验室".该地区发育的鲕状泉华宏观上具有"黄豆状"聚合体的三维形态,与岩溶钙华、正常湖相鲕粒相比有显著的不同.本文在对鲕状泉华发育地区的泉水水化学分析基础上,借助常规显微镜、扫描电子显微镜(SEM)等技术手段,对鲕状泉华展开了矿物学及岩石学的研究.结果表明:温泉地区热泉水具有较高的二氧化碳分压PCO2和高方解石饱和指数(SIc皆大于0,平均值为0.63).鲕状泉华宏观上呈黄豆状,颗粒及填隙物颜色皆为淡黄色.微观上,泉华颗粒共发育六种单元纹层类型,且六种单元纹层发育不同组合样式而构成四种颗粒类型;泉华胶结物矿物颗粒(方解石)C轴垂直于纹层面生长,世代结构明显.综上,鲕状泉华的颗粒类型为核形石,其生长环境水体较浅,水动力较强,具特殊的水文化学条件以及广泛的藻类活动(硅藻)等多因素相互作用主导颗粒发育.

References

[1]  李熙哲, 管守锐, 谢庆宾, 等. 2000. 平邑盆地下第三系官中段核形石成因分析. 岩石学报, 16: 261-269
[2]  蒲庆余, 吴锡浩, 钱方. 1982. 青藏公路沿线唐古拉山地区的第四纪地质问题. 青藏高原地质文集. 北京: 地质出版社. 19-33
[3]  王绍令. 1992. 青藏高原古泉华及其意义. 水文地质工程地质, 19: 29-31
[4]  Charlotte S, Denys B S, Edward S. 1981. Spring peas from New York State: Nucleation and growth of fresh water hollow ooliths and pisoliths. J Sediment Res, 51: 1341-1346
[5]  Davies P J, Martin K. 1976. Radial aragonite ooids, Lizard Island, Great Barrier Reef, Queensland, Australia. Geology, 4: 251-256
[6]  Davidson S C, Mckinstry H R. 1931. Cave pearls, oolites, and isolated inclusions in veins. Econ Geol, 26: 289-294
[7]  Douglas B. 1994. Fabric shape and the interpretation of sedimentary fabric data. J Sediment Res, 64: 910-915
[8]  Donahue J. 1965. Laboratory growth of pisolite grains. J Sediment Petrol, 35: 251-256
[9]  吴中海, 吴珍汉, 胡道功, 等. 2005. 青藏高原中部温泉盆地西侧晚第四纪正断层作用的地貌标志及断裂活动速率. 地质通报, 24: 48-57
[10]  伍坤宇, 沈立成, 王香桂, 等. 2011. 西藏朗久地热田及其温泉水化学特征研究. 中国岩溶, 30: 1-8
[11]  王江海. 1998. 陆相热水沉积作用-以云南地区为例. 北京: 地质出版社. 110-119
[12]  杨玉芳, 钟建华, 曾石岐, 等. 2009. 松辽盆地早白垩世青山口组核形石的特征及其环境意义. 地质学报, 83: 558-569
[13]  叶大年. 1981. 岩矿实验室工作方法. 北京: 地质出版社. 124-130
[14]  章典, 师长兴. 2002. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌. 地质学报, 76: 566-570
[15]  Augustithis S S. 1989. Atlas of the Sphaeroidal Textures and Structures and their Genetic Significance. Athens: Theophrastus Publications. 1-10
[16]  Brehm U, Krumbein W E, Palinska K A. 2003. Microbial spheres: A novel cyanobacterial-diatom symbiosis. Naturwiss, 90: 136-140
[17]  Brehm U, Krumbein W E, Palinska K A. 2006. Biomicrospheres generate ooids in laboratory. Geomicrobiol J, 23: 545-550
[18]  Braithwhite C J R. 1979. Crystal textures of recent fluvial pisolites and laminated crusts in Dyfed, South Wales. J Sediment Petrol, 49: 181-194
[19]  Fouke B W. 2011. Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology, 58: 170-219
[20]  Chafetz H S, Guidry S A. 2003. Deposition and diagenesis of Mammoth hot Springs travertine, Yellowstone National Park, Wyoming, USA. Can J Earth Sci, 40: 1515-1529
[21]  Duguid S M A, Kyser T K, James N P, et al. 1980. Microbes and ooids. J Sediment Res, 80: 236-251
[22]  Eardley A J. 1938. Sediments of the Great Sale Lake, Utah. Am Ass. Petrol Geol Bull, 22: 1305-1411
[23]  Erik Flugel. 2004. Microfacies of Carbonate Rocks. Germary: Springer. 276-279
[24]  Fabricius F H. 1977. Origin of Marine Ooids and Grupestones. Stuttgart: E. Schweizerbart`sche Verlagsbuchhandlung. 1-113
[25]  Ferguson J, Bubela B, Davies P J. 1978. Synthesos and possible mechanism of formation of radial carbonate ooids. Chem Geol, 22: 285-308
[26]  Gollubic S, Fisher A G. 1975. Ecology of calcareous nodules forming in Little Conestoga Creek near Lancaster, Pennsylvania. Verk Int Verein Limnol, 19: 2315-2323
[27]  Halley R B. 1977. Ooid fabric and fracture in the Great Salt Lake and the geologic record. J Sediment Petrol, 47: 1099-1120
[28]  Harris P M. 1977. Sedimentology of the Joulters Cay Ooid Sand Shoal, Great Bahama Bank. Ph. D. Dissertation. Miami: University of Miami. 451
[29]  Jones F G, Wilkinson B H. 1978. Structure and growth of lacustrine pisolites from recent Michigan Marl Lakes. J Sediment Petrol, 48: 1103-1110
[30]  Land L S, Behrens E W, Frishman S A. 1979. The ooids of Baffin Bay, Texas. J Sediment Petrol, 49: 1269-1278
[31]  Mcgannon D E. 1975a. Primary fluvial oolites. J Sediment Petrol, 45: 719-727
[32]  Mcgannon D E. 1975b. Fluvial pisolites. Am Ass. Petrol Geol Abs, 2: 48
[33]  Martin H G, Veysey J, Bonheyo G T, et al. 2010. Statistical evaluation of bacterial 16S rRNA gene sequences in relation to travertine mineral precipitation and water chemistry at Mammoth Hot Springs, Yellowstone National Park, USA. In: Barton L, Mendl M, Loy A, eds. Geomicrobiology: Molecular and Environmental Perspective. New York: Springer. 223-245
[34]  Newell V P, Purdy E, Imbrie J. 1960. Bahamian oolitic sand. J Geol, 68: 481-497
[35]  Pentecost A, Coletta P. 2007. The role of photosynthesis and CO2 evasion in travertine formation: A quantitative investigation at an important travertine-depositing hot spring, Le Zitelle, Lazio. J Geol Soc, 164: 843-853
[36]  Sorby H C. 1879. The structure and origin of limestones. Geol Soc London Quart J Proc, 35: 56-95
[37]  Simone L. 1980. Ooids: A review. Earth-Sci Rev, 16: 319-355
[38]  Tucker M E, Wright V P. 1990. Carbonate Sedimentology. Oxford: Blackwell Sciences
[39]  Wilkinson B H, Popp B N, Owen R M. 1980. Nearshore oolite formation in a modern temerate region marl lake. J Geol, 88: 697-704

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133