全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

汶川地震断层岩气体和液体渗透率实验研究

, PP. 2274-2284

Keywords: 断层岩,渗透率,Klinkenberg效应,孔隙压力振荡法断层带

Full-Text   Cite this paper   Add to My Lib

Abstract:

?以N2和水为孔隙流体在20~180MPa围压范围内详细测量了汶川地震断裂带断层岩的渗透率,并同时测量了作为参照的砂岩的渗透率.实验结果表明,气体和液体渗透率均随围压增加而幂次衰减.在相同围压和孔隙压条件下,N2渗透率高于水渗透率接近1个数量级.将Klinkenberg效应校正后的气体渗透率(绝对渗透率)与水渗透率进行了比较.对比结果显示,砂岩的绝对渗透率与水渗透率基本一致;但断层岩绝对渗透率显著高于水渗透率,表明断层岩气体渗透率与水渗透率之差别不能完全由Klinkenberg效应解释.对实验数据的拟合分析表明,滑脱因子b值与绝对渗透率kl存在幂律关系(b=lkld).断层岩符合b=0.2×10-3kl-0.557关系(R2=0.998),显示绝对渗透率在10-16~10-20m2范围内,控制断层岩渗透率的因素是一致的.另一方面,断层岩的d值明显小于砂岩的d值,暗示二者的滑脱效应存在差异.分析表明,断层岩中的粘土矿物颗粒表面吸附水及粘土矿物吸水膨胀导致有效孔隙尺寸减小是造成断层岩渗透率显著低于绝对渗透率的主要原因.研究结果显示,对于富含粘土矿物的断层岩,经Klinkenberg校正后的气体渗透率与水渗透率并不一致,因此采用相应的液体作为测量介质才能够更为准确和真实地揭示地下流体的渗流状况.

References

[1]  Faulkner D R, Rutter E H. 2000. Comparisons of water and argon permeability in natural clay-bearing fault gouge under high pressure at 20°C. J Geophys Res, 105: 16415-16426
[2]  Faulkner D R, Rutter E H. 2003. The effect of temperature, the nature of the pore fluid, and subyield differential stress on the permeability of phyllosilicate-rich fault gouge. J Geophys Res, 108(B5): 2227
[3]  Fischer G J, Paterson M S. 1992. Measurements of Permeability and Storage Capacity in Rocks during Deformation at High Temperature and Pressure. In: Evans B, Wong T F, eds. Fault Mechanics and Transport Properties of Rocks. New York: Academic Press. 213-52
[4]  Freeman D L, Bush D C. 1983. Low-permeability laboratory measurements by nonsteady-state and conventional methods. Soc Petrol Eng J, 23: 928-936
[5]  Heid J G, McMahon J J, Nielson R F. 1950. Study of the permeability of rocks to homogeneous fluids. Am Pet Inst Drill Prod Pract. 230-244
[6]  Jones F O, Owens W W. 1980. A laboratory study of low-permeability gas sands. J Pet Technol, 32: 1631-1640
[7]  Jones J R, Frank O. 1964. Influence of chemical composition of water on clay blocking of permeability. J Pet Technol, 16: 441-446
[8]  Jones, Stanley C. 1972. Rapid accurate unsteady-state Klinkenberg permeameter. Spe J, 12: 383-397
[9]  Kia S F, Fogler H, Reed M G, et al. 1987. Effect of salt composition on clay release in Berea sandstones. SPE Prod Eng, 2: 277-283
[10]  Klinkenberg L J. 1941. The permeability of porous media to liquids and gases. Am Pet Inst Drill Prod Pract. 200-213
[11]  Kranz R L, Saltzman J S, Blacic J D. 1990. Hydraulic diffusivity measurements on laboratory samples using an oscillating pore pressure method. Int J Rock Mech Min Sci Geomech Abstr, 27: 345-52
[12]  Kwon O, Herbert B, Kronenberg A. 2004. Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally connected pores. J Geophys Res, 109: B10206
[13]  Mesri G, Olson R. 1971. Mechanisms controlling the permeability of clays. Clays Clay Minerals, 19: 151-158
[14]  Moore D, Morrow C, Byerlee J. 1982. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing. Geophys Res Lett, 9: 1009-1012
[15]  Morrow C A, Shi L Q, Byerlee J B. 1981. Permeability and strength of San Andreas fault gouge under high pressure. Geophys Res Lett, 8: 325-328
[16]  Morrow C A, Zhang B C, Byerlee J D. 1986. Effective pressure law for permeability of Westerly granite under cyclic loading. J Geophys Res, 91: 3870-3876
[17]  Morris K, Shepperd C. 1982. The role of clay minerals in influencing porosity and permeability characteristics in the bridport sands of wytch farm, dorset. Clay Minerals, 17: 41-54
[18]  Rice J R. 1992. Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans B, Wong T F, eds. Earthquake Mechanics and Transport Properties of Rocks. London: Academic Press. 475-503
[19]  Rodwell W R, Nash P J. 1992. Mechanisms and modeling of gas migration from deep radioactive waste repositories. London: United Kingdom Nirex Ltd. 86
[20]  Rushing J A, Newsham K E, Lasswell P M, et al. 2004. Klinkenberg-corrected permeability measurements in tight gas sands: Steady-state versus unsteady-state techniques. SPE Annual Technical Conference and Exhibition, doi: 10.2118/89867-MS
[21]  Sibson R H. 1992. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211: 283-293
[22]  陈建业, 杨晓松, 党嘉祥, 等. 2011. 汶川地震断层带结构及渗透率. 地球物理学报, 54: 1805-1816
[23]  陈建业, 杨晓松. 2012. 地震断层的渗透性. 地学前缘, 19: 30-40
[24]  陈卫忠, 杨建平, 伍国军, 等. 2008. 低渗透介质渗透性实验研究. 岩石力学与工程学报, 27: 236-243
[25]  陈颙, 黄庭芳, 刘恩儒. 2009. 岩石物理学. 合肥: 中国科学技术大学出版社
[26]  党嘉祥, 周永胜, 韩亮, 等. 2012. 虹口八角庙-深溪沟炭质泥岩同震断层泥的X射线衍射分析结果. 地震地质, 34: 17-27
[27]  胡国忠, 王宏图, 范晓刚, 等. 2009. 低渗透突出煤的瓦斯渗流规律研究. 岩石力学与工程学报, 28: 2527-2534
[28]  李健鹰, 吴同明. 1987. 钾盐对油气层中粘土水化膨胀的抑制作用. 天然气工业, 7: 50-52
[29]  王大纯, 张人权, 史毅虹, 等. 1995. 水文地质学基础. 北京: 地质出版社
[30]  王正波, 岳湘安, 韩冬. 2007. 粘土矿物及流体对低渗透岩心渗流特性的影响. 油气地质与采收率, 14: 89-93
[31]  吴曼, 杨晓松, 陈建业. 2011. 超低渗透率测量仪的标定及初步试验结果. 地震地质, 33: 719-735
[32]  于丽艳, 潘一山, 肖晓春, 等. 2011. 低渗煤层气藏气体KlinKenberg效应试验研究. 水资源与水工程学报, 22: 15-19
[33]  朱益华, 陶果, 方伟, 等. 2007. 低渗气藏中气体渗流Klinkenberg效应研究进展. 地球物理学进展, 22: 1591-1596
[34]  Baptist O C, Sweeney S A. 1954. The effect of clays on the permeability of reservoir sands to waters of different saline contents. Coast Regional Conference on Clays and Clay. 505-515
[35]  Behnsen J, Faulkner D R. 2011. Water and argon permeability of phyllosilicate powders under medium to high pressure. J Geophys Res, 116: B12203
[36]  Bernabé Y, Brace W, Evans B. 1982. Permeability, porosity and pore geometry of hot-pressed calcite. Mech Mater, 1: 173-183
[37]  Brace W F, Walsh J B, Frangos W T. 1968. Permeability of granite under high pressure. J Geophys Res, 73: 2225-2236
[38]  Brown K M, Ransom B. 1996. Porosity corrections for smectite-rich sediments: Impact on studies of compaction, fluid generation, and tectonic history. Geology, 24: 843-846
[39]  Byerlee J. 1993. Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology, 21: 303-306
[40]  Caine J S, Evans J P, Forster C B. 1996. Fault zone architecture and permeability structure. Geology, 24: 1025-1028
[41]  Cases J, Berend I, Francois M, et al. 1997. Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ echanged forms. Clays Clay Minerals, 45: 8-22
[42]  Chen J Y, Yang X S, Duan Q B, et al. 2013a. Importance of thermochemical pressurization in the dynamic weakening of Longmenshan fault during the 2008 Wenchuan earthquake: Inference from experiments and modeling. J Geophys Res, 118: 4145-4169
[43]  Chen J Y, Yang X S, Ma S L, et al. 2013b. Mass removal and clay mineral dehydration/rehydration in carbonate-rich surface exposures of the 2008 Wenchuan Earthquake fault: Geochemical evidence and implications for fault zone evolution and coseismic slip. J Geophys Res, 118: 474-496
[44]  Elisabeth C, Jér?me C. 2005. Adhesion forces between wetted solid surfaces. J Chem Phys, 122: 1-9
[45]  Evans J P, Forster C B, Goddard J V. 1997. Permeability of fault-related rocks, and implications for hydraulic structure of fault zone. J Struc Geol, 19: 1393-1404
[46]  Faulkner D R, Rutter E H. 1998. The gas permeability of clay-bearing fault gouge at 20°C. In: Jones G., Fisher Q J, Knipe R J, eds. Faulting, Faulting, Faulting Sealing and Fluid Flow in Hydrocarbon Reservoirs. London Geol Soc Spec Publ, 147: 147-156
[47]  Israelachvili J N. 1992. Adhesion forces between surfaces in liquids and condensable vapours. Surf Sci Rep, 14: 109-159
[48]  Tanikawa W, Shimamoto T. 2009. Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. Int J Rock Mech and Min Sci, 46: 229-238
[49]  Wu Y S, Pruess K, Persoff P. 1998. Gas flow in porous media with Klinkenberg effects. Transport Porous Media, 32: 117-137
[50]  Yang X S. Chen J Y, Duan Q B. 2011. Grain size distribution of fault rocks: Implication from natural gouges and high velocity friction experiments. American Geophysical Union, Fall Meeting. T32C-08
[51]  Zhang M, Takeda M, Esaki T, et al. 2001. Effects of confining pressure on gas and water permeabilities of rocks. Mat Res Soc Symp Proc. 663
[52]  Zoback D M, Byerlee D J. 1975. The effect of microcrack dilatancy on the permeability of westerly granite. J Geophys Res, 80: 752-757

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133