全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

糜棱化富有机质页岩孔隙结构特征及其含义

, PP. 2202-2209

Keywords: 页岩气,糜棱结构,孔隙结构,大巴山弧形,褶皱带,鲁家坪组,下古生界

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在川东北地区下寒武统鲁家坪组地层中发现高含气页岩,该页岩位于大巴山弧形逆冲推覆构造带上城口断裂附近,有机质成熟度Ro达4.0%以上.基于薄片和扫描电镜观察,并结合低温液氮吸附实验,对页岩的孔隙结构特征进行了综合研究.研究认为,地层中劈理发育,劈理域中发育粘土矿物夹有机质颗粒等不溶物质,粘土矿物颗粒呈定向排列,发育糜棱结构;劈理域中大量有机质颗粒与粘土矿物充分混合,发育纳米级粒间间隙-层片间隙集合体-孔隙网络的糜棱化孔隙体系.这种糜棱化孔隙具有比表面积大、吸附能力强和毛细管压力高等特点,是该复杂构造区页岩气富集的主要原因.糜棱化富有机质页岩孔隙结构的发现,揭示了一种四川盆地东北部复杂构造区高过成熟页岩新的富气机理.

References

[1]  董成斌. 1996. 湖北省郧县红岩背地区剪切褶皱构造解析. 成都理工学院学报增刊, 23: 88-95
[2]  韩辉, 李大华, 马勇, 等. 2013. 四川盆地东北地区下寒武统海相页岩气成因: 来自气体组分和碳同位素组成的启示. 石油学报, 5: 453-459
[3]  侯泉林, 李会军, 范俊佳, 等. 2012. 构造煤结构与煤层气赋存研究进展. 中国科学: 地球科学, 10: 1487-1495
[4]  琚宜文, 姜波, 侯泉林, 等. 2005. 煤岩结构纳米级变形与变质变形环境的关系. 科学通报, 50: 1884-1892
[5]  琚宜文. 2005. 构造煤结构及储层物性. 徐州: 中国矿业大学出版社. 102-115
[6]  马力, 陈焕疆, 甘克文, 等. 2004. 中国南方大地构造和海相油气地质(上册). 北京: 地质出版社. 1-283
[7]  王平全. 2001. 粘土表明结合水定量分析及水合机制研究. 博士学位论文. 成都: 西南石油大学. 10-144
[8]  卫管一, 张长俊. 1995. 岩石学简明教程. 北京: 地质出版社. 155-171
[9]  张国伟, 张本仁, 袁学诚, 等. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社. 117-321
[10]  张厚福, 方朝亮, 高先志, 等. 1999. 石油地质学. 北京: 石油工业出版社. 120-124
[11]  Ambrose R J, Hartman R C, Dias-Campos M, et al. 2010. New pore-scale considerations for shale gas in place calculations. SPE Unconventional Gas Conference. SPE Paper, 131772: 17
[12]  Curtis J B. 2002. Fractured shale-gas systems. AAPG Bull, 86: 1921-1938
[13]  Curtis M E, Sondergeld C H, Ambrose R J, et al. 2012. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull, 96: 665-677
[14]  Hao F, Zou H, Lu Y. 2013. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull, 97: 1325-1346
[15]  Himeno S, Tomita T, Suzuki K, et al. 2007. Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite. Microporous Mesoporous Mat, 98: 62-69
[16]  Murata K, Mitsuoka K, Hirai T, et al. 2000. Structural determinants of water permeation through aquaporin-1. Nature, 407: 599-605
[17]  Jarvie D, Pollastro R M, Hill R J, et al. 2004. Evaluation of hydrocarbon generation and storage in the Barnett Shale, Ft. Worth Basin, Texas. In: Ellison Miles Memorial Symposium, Farmers Branch, Texas, USA. 93-94
[18]  Li H, Ogawa Y. 2001. Pore structure of sheared coals and related coalbed methane. Environ Geol, 40: 1455-1461
[19]  Li H, Ogawa Y, Shimada S. 2003. Mechanism of methane flow through sheared coals and its role on methane recovery. Fuel, 82: 1271-1279
[20]  Loucks R G, Reed R M, Ruppel S C, et al. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J Sediment Res, 79: 848-861
[21]  Loucks R G, Reed R M, Ruppel S C, et al. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull, 96: 1071-1098
[22]  Milliken K L, Rudnicki M, Awiller D N, et al. 2013. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull, 97: 177-200
[23]  Ross D J K, Bustin R M. 2009. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Pet Geol, 26: 916-927
[24]  Schieber J. 2010. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones: Illustrated with examples from across the Phanerozoic. SPE Unconventional Gas Conference. SPE Paper, 132379: 10
[25]  Slatt M S, O’Brien N R. 2011. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull, 95: 2017-2030
[26]  Song B. 2010. Pressure transient analysis and production analysis for New Albany ahale gas wells. Master’s Thesis. Texas: Texas A & M University
[27]  Sondergeld, C H, Ambrose R J, Rai C S, et al. 2010. Microstructural studies of gas shales. SPE Unconventional Gas Conference. SPE Paper, 131771: 17
[28]  Wang F P, Reed R M. 2009. Pore Networks and Fluid Flow in Gas Shales. SPE Annual Technical Conference Exhibition. SPE Paper, 124253: 3
[29]  Beliveau D. 1993. Honey, I shrunk the pores. J Can Petrol Technol, 32: 15-17
[30]  Boyer C, Keischnick J, Lewis R E, et al. 2006. Producing gas from its source. Oilfield Rev, 18: 36-49
[31]  Chalmers G R L, Bustin R M. 2008. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity. B Can Petrol Geol, 56: 1-21

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133