全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黄河三角洲不同气候条件下沉积物中胶黄铁矿的形成

, PP. 2193-2201

Keywords: 黄河三角洲,河湖相,胶黄铁矿,黄铁矿,沉积环境

Full-Text   Cite this paper   Add to My Lib

Abstract:

?胶黄铁矿的形成和保存可以指示沉积环境的理化特征.对黄河三角洲钓口叶瓣钻取的一根长30.4m高取芯率岩芯ZK30孔进行了粒度和磁学性质测试,并对提取的磁性颗粒进行了扫描电镜(SEM)和X射线衍射(XRD)分析.研究结果表明,该岩芯在浅海相向河湖相转换处(29.4~29.7m)以及河湖相向盐沼相转换处(26.1~27.1m)的沉积物,具有显著高于其他层位沉积物的饱和等温剩磁(SIRM)及其与磁化率(χ)的比值(SIRM/χ),反映了这两层沉积物中存在胶黄铁矿的可能性,这一磁学性质的判断得到了SEM和XRD分析的支持.在河湖相底层处(29.4~29.7m),沉积物较粗,胶黄铁矿与黄铁矿共存,但分布厚度较薄;而在河湖相顶层处(26.1~27.1m),沉积物颗粒较细,黄铁矿少见,胶黄铁矿层分布厚度较厚.这一胶黄铁矿和黄铁矿存在方式的差异,反映了不同气候条件和沉积环境对胶黄铁矿赋存的控制.

References

[1]  艾莉, 强小科, 宋友桂, 等. 2011. 青海湖晚更新世沉积物中胶黄铁矿的发现及其环境指示意义. 地球物理学报, 54: 2309-2316
[2]  成国栋, 薛春汀, 周永青. 1987. 黄河三角洲地区晚更新世晚期及全新世地层. 海洋地质与第四纪地质, 7(增刊): 63-73
[3]  高伟. 2011. 现代黄河三角洲钓口叶瓣地层层序研究. 博士学位论文. 青岛: 中国海洋大学. 1-137
[4]  宫少军. 2010. 现代黄河三角洲湿地ZK1、ZK3、ZK5岩芯沉积学记录及环境分析. 硕士学位论文. 北京: 中国地质大学. 1-67
[5]  胡守云, Appel E, Hofmann V, et al. 2002. 湖泊沉积物中胶黄铁矿的鉴出及其磁学意义. 中国科学D辑: 地球科学, 32: 234-238
[6]  胡守云, 王苏民, Appel E, et al. 1998. 呼伦湖湖泊沉积物磁化率变化的环境磁学机制. 中国科学D辑: 地球科学, 28: 334-339
[7]  李广雪, 庄振业, 韩德亮. 1998. 末次冰期晚期以来地层序列与地质环境特征——渤海南部地区沉积序列研究. 青岛海洋大学学报, 28: 161-166
[8]  Jiang W T, Horng C S, Roberts A P, et al. 2001. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth Planet Sci Lett, 193: 1-12
[9]  Kao S J, Horng C S, Roberts A P, et al. 2004. Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation. Chem Geol, 203: 153-168
[10]  Karlin R, Levi S. 1983. Diagenesis of magnetic minerals in recent haemipelagic sediments. Nature, 303: 327-330
[11]  Krs M M, Krsová L, Koulíková P, et al. 1992. On the applicability of oil shale to paleomagnetic investigations. Phys Earth Planet Inter, 70: 178-186
[12]  Larrasoa?a J C, Roberts A P, Musgrave R J, et al. 2007. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth Planet Sci Lett, 261: 350-366
[13]  Lee C H, Jin J H. 1995. Authigenic greigite in mud from the continental shelf of the Yellow Sea, off the southwest Korean Peninsula. Mar Geol, 128: 11-15
[14]  Liu J, Saito Y, Wang H, et al. 2009. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea. J Asian Earth Sci, 36: 318-331
[15]  Maher B A. 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Paleogeogr Paleoclimatol Paleoecol, 137: 25-54
[16]  Mohamed K J, Rey D, Rubio B, et al. 2011. Onshore-offshore gradient in reductive early diagenesis in coastal marine sediments of the Ria de Vigo, Northwest Iberian Peninsula. Cont Shelf Res, 31: 433-447
[17]  Oda H, Torii M. 2004. Sea-level change and remagnetization of continental shelf sediments off New Jersey (ODP Leg 174A): Magnetite and greigite diagenesis. Geophys J Int, 156: 443-458
[18]  Oles D, Houben G. 1998. Greigite (Fe3S4) in an acid mudpool at Makiling volcano, the Philippines. J Asian Earth Sci, 16: 513-517
[19]  Reynolds R L, Rosenbaum J G, van Metre P, et al. 1999. Greigite as an indicator of drought-The 1912-1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA. J Paleolimnol, 21: 193-206
[20]  Roberts A P, Turner G M. 1993. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth Planet Sci Lett, 115: 257-273
[21]  Roberts A P. 1995. Magnetic characteristics of sedimentary greigite (Fe3S4). Earth Planet Sci Lett, 134: 227-236
[22]  Roberts A P, Reynolds R L, Verosub K L, et al. 1996. Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m.y. lake sediment record from Butte Valley, northern California. Geophys Res Lett, 23: 2859-2862
[23]  Roberts A P, Jiang W T, Florindo F, et al. 2005. Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy. Geophys Res Lett, 32: L05307, doi: 10.1029/2004GL022137
[24]  Roberts A P, Chang L, Rowan C J, et al. 2011. Magnetic properties of sedimentary greigite (Fe3S4): An update. Rev Geophys, 49: RG1002, doi: 10.1029/2010RG000336
[25]  Ron H, Nowaczyk N R, Frank U, et al. 2007. Greigite detected as dominating remanence carrier in late Pleistocene sediments, Lisan Formation, from Lake Kinneret (Sea of Galilee), Israel. Geophys J Int, 170: 117-131
[26]  Rowan J C, Roberts A P. 2006. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet Sci Lett, 241: 119-137
[27]  Skinner B J, Erd R C, Grimaldi F S. 1964. Greigite, the thio-spine1 of iron: A new mineral. Am Miner, 49: 543-555
[28]  Snowball I F, Thompson R. 1988. The occurrence of the greigite in sediments from Loch Lomond. J Quat Sci, 3: 12-125
[29]  Snowball I F. 1997. Gyroremanent magnetization and the magnetic properties of greigite-bearing clays in southern Sweden. Geophys J Int, 129: 624-636
[30]  Stockhausen H, Zolitschk B. 1999. Environmental changes since 13000 cal. BP reflected in magnetic and sedimentological properties of sediments from Lake Holzmaar (Germany). Quat Sci Rev, 18: 913-925
[31]  Tric E C, Laj C, Jehanno J P, et al. 1991. High resolution record of the Upper Olduvai transition from Po Valley (Italy) sediments: Support for dipolar transition geometry. Phys Earth Planet Inter, 65: 319-336
[32]  Wáren A, Bengtson S, Goffredi S K, et al. 2003. A hot-vent gastropod with iron sulfide dermal sclerites. Science, 302: 1007
[33]  刘健, 朱日祥, 李绍全, 等. 2003. 南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应. 中国科学D辑: 地球科学, 33: 583-592
[34]  刘修锦, 王永红, 李广雪, 等. 2014. 基于磁学和粒度参数的黄河三角洲刁口叶瓣地区全新世以来的地层演化. 沉积学报, 32: 518-526
[35]  秦蕴珊, 赵松龄, 赵一阳, 等. 1985. 渤海地质. 北京: 科学出版社
[36]  任美锷. 2006. 黄河的输沙量: 过去、现在和将来——距今15万年以来的黄河泥沙收支表. 地球科学进展, 21: 551-563
[37]  阎玉忠, 王宏, 李凤林, 等. 2006. 渤海湾西岸BQ1孔揭示的沉积环境与海面波动. 地质通报, 25: 357-382
[38]  姚檀栋, Thompson L G, 施雅风, 等. 1997. 古里雅冰芯中末次间冰期以来气候变化记录研究. 中国科学D辑: 地球科学, 27: 447-452
[39]  Alekseeva T, Alekseev A, Maher B A, et al. 2007. Late Holocene climate reconstructions for the Russian steppe, based on mineralogical and magnetic properties of buried palaeosols. Paleogeogr Paleoclimatol Paleoecol, 249: 103-127
[40]  Berner R A. 1984. Sedimentary pyrite formation: An update. Geochim Cosmochim Acta, 48: 605-615
[41]  Blanchet C L, Thouveny N, Vidal L. 2009. Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara basin: Implications for paleoenvironmental changes during the past 35 ka. Paleoceanography, 24: PA2224, doi: 10.1029/2008PA001719
[42]  Demory F, Oberhansli H, Nowaczyk N R, et al. 2005. Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism. Glob Planet Change, 46: 145-166
[43]  Jelinowsk A P, Tucholka F, Guichard I, et al. 1998. Mineral magnetic study of Late Quaternary south Caspian Sea sediments: Palaeoenvironmental implications. Geophys J Int, 133: 499-509

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133