Kruse J, Leinweber P. 2008. Phosphorus in sequentially extracted fen peat soils: A K-edge X-ray absorption near edge structure (XANES) spectroscopy study. J Plant Nutr Soil Sci, 171: 613-620
[2]
Li Z X, He Y Q, Yang X M, et al. 2010. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quatern Int, 218: 166-175
[3]
Lombi E, Scheckel K G, Armstrong R D, et al. 2006. Speciation and distribution of phosphorus in a fertilized soil: A synchrotron-based investigation. Soil Sci Soc Am J, 70: 2038-2048
[4]
Neiva A M R, Silva M M V G, Antunes I M H R, et al. 2000. Phosphate minerals of some granitic rocks and associated quartz veins from Northern and Central Portugal. J Czech Geol Soc, 46: 35-44
Abrams M M, Jarrell W M. 1992. Bioavailability index for phosphorus using nonexchange resin impregnated membranes. Soil Sci Soc Am J, 56: 1532-1537
[9]
Ajiboye B, Akinremi O O, Hu Y et al. 2008. XANES speciation of phosphorus in organically amended and fertilized vertisol and mollisol. Soil Sci Soc Am J, 72: 1256-1262
[10]
Beauchemin S, Hesterberg D, Chou J, et al. 2003. Speciation of phosphorus in phosphorusenriched agricultural soils using X-ray adsorption near-edge spectroscopy and chemical fractionation. J Environ Qual, 32: 1809-1819
[11]
Cassagne N, Remaury M, Gauquelin T, et al. 2000. Formsand profile distribution of soil phosphorus in alpine Inceptisols and Spodosols (Pyrenees, France). Geoderma, 95: 161-172
[12]
Chapin F S, Walker L R, Fastie C L, et al. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecolo Monog, 64: 149-175
[13]
Cross A F, Schlesinge W H. 1995. A literature-review and evaluation of the Hedley fractionation-applications to the biogeochemical cycle of soil-phosphorus in natural ecosystems. Geoderma, 64: 197-214
[14]
Duci? V, Milovanovi? B, Durdi? S. 2011. Identification of recent factors that affect the formation of the upper tree line in eastern Serbia. Arch Biol Sci, 63: 825-830
[15]
Flicoteaux R, Lucas J. 1984. Weathering of phosphate minerals. In: Nriagu J O, Moore P B, eds. Phosphate Minerals. Berlin: Springer. 292-317
[16]
F?llmi K B, Arn K, Hosein R, et al. 2009. Biogeochemical weathering in sedimentary chronosequences of the Rh?ne and Oberaar Glaciers (Swiss Alps): Rates and mechanisms of biotite weathering. Geoderma, 151: 270-281
[17]
Gonsiorczyk T, Casper P, Koschel R. 1998. Phosphorus-binding forms in the sediments of oligotrophic and an eutrophic hardwater lake of Baltic Lake district (Germany). Water Sci Technol, 37: 51-58
[18]
He L, Tang Y. 2008. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena, 72: 259-269
[19]
Hedley M J, Stewart J W B, Chauhan B S. 1982. Changes in inorganic and organic soil phosphorus fractions by cultivation practices and laboratory incubation. Soil Sci Soc Am J, 46: 970-976
[20]
Hesterberg D, Zhou W, Huchison K J, et al. 1999. XAFS study of adsorbed and mineral forms of phosphate. J Synchrotron Rad, 6: 636-638
[21]
Hunger S, Sims J T, Sparks L. 2005. How accurate is the assessment of phosphorus pools in poultry litter by sequential extraction. J Environ Qual, 34: 382-389
[22]
Johnson A H, Frizano J, Vann D R. 2003. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia, 135: 487-499
[23]
Kar G, Hundal L S, Schoenau J, et al. 2011. DerekDirect chemical speciation of P in sequential chemical extraction residues using P K-edge X-ray absorption near-edge structure spectroscopy. Soil Sci, 176: 589-595
[24]
Kaňa J, Kopá?ek J. 2005. Impact of soil sorption charateristics and bedrock composition on phosphorus concentration in two Bohemian forest lakes. Water Air Soil Pollut, 173: 243-259
[25]
Peak D, Sims J T, Sparks S. 2002. Soild-state speciation of natural and alum-amended poultry litter using XANES spectroscopy. Environ Sci Technol, 36: 4253-4261
[26]
Prietzel J, Dümig A, Wu Y H, et al. 2013. Phosphorus K-edge XANES spectroscopy reveals rapid changes of P speciation in the topsoil of two glacier foreland chronosequences. Geochim Cosmochim Acta, 108: 154-171
[27]
Ravel B, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad, 12: 537-541
[28]
Reynolds C S, Davies P S. 2001. Sources and bioavailability of phosphorus fractions in freshwater: A British perspective. Biological Rev Cambridge Phil Soc, 76: 27-64
[29]
Sala O E, Chapin F S, Armesto J J, et al. 2000. Global biodiversity scenarios for the year 2100. Science, 287: 1770-1774
[30]
Smil V. 2000. Phosphorus in the environment: Natural flows and human interferences. Annu Rev Energy Environ, 25: 53-88
[31]
Tiessen H, Moir J. 1993. Characterization of available P by sequential extraction. In: Carter M R, ed. Soil Sampling and Methods of Analysis. Lewis Publishers. 75-86
[32]
Turner B L, Condron L M, Richardson S J, et al. 2007. Soil organic phosphorus transformations during pedogenesis. Ecosystems, 10: 1166-1181
[33]
Vitousek P M, Poder S, Houlton R Z, et al. 2010. Terrestrial phosphorus limitation: Mechanism, implication, and nitrogen-phosphorus interactions. Ecol Appl, 20: 5-15
[34]
Walker T W, Syers J K. 1976. The fate of phosphorus during pedogenesis. Geoderma, 15: 1-19
[35]
Wu Y H, Zhou J, Yu D, et al. 2013. Phophorus biogeochemical cycle research in mountainous ecosystem. J Mount Sci, 10: 43-53
[36]
Zhou J, Wu Y H, Prietzel J, et al. 2013. Changes of soil phosphorus stocks and speciation along a 120-yr soil chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China). Geoderma, 195-196: 251-259