全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

两种形态分析方法对冰川退缩时间序列土壤中磷的生物有效性评价

, PP. 2006-2015

Keywords: 土壤,磷形态,Hedley连续提取,XANES,海螺沟

Full-Text   Cite this paper   Add to My Lib

Abstract:

?土壤磷的生物有效性是陆地生态系统安全和初始生产力的重要影响因素.土壤中磷的生物有效性由其形态组成决定.常用的磷形态分类方法是Hedley提出的连续提取法,即通过不同化学强度的提取剂对土壤样品进行分步提取,各级提取剂提取出的磷被定义为不同形态的磷.近年来又推出了X射线吸收近边结构法(XANES),利用在分子水平上给出目标元素周围的局部结构和化学信息的优势,能区分出与Fe,Al和Ca等金属结合的磷的形态.本文利用改进的Hedley连续提取法和XANES方法对贡嘎山海螺沟冰川退缩迹地上土壤中磷的形态进行了分析,在比较两种方法优缺点的基础上,获得了海螺沟冰川退缩120年序列上土壤磷的生物有效性的变化.结果表明:Hedley连续提取法对即时生物可利用磷能有准确的判识(Resin-P和NaCHO3-P),而XANES方法对金属结合态的磷有很好的判识.海螺沟冰川退缩时间序列土壤中钙铝结合态的磷主要为原生矿物磷,随成土作用增强而减少.即时生物可利用磷从30年后迅速增加,促使了植被形成和演替.

References

[1]  Kruse J, Leinweber P. 2008. Phosphorus in sequentially extracted fen peat soils: A K-edge X-ray absorption near edge structure (XANES) spectroscopy study. J Plant Nutr Soil Sci, 171: 613-620
[2]  Li Z X, He Y Q, Yang X M, et al. 2010. Changes of the Hailuogou glacier, Mt. Gongga, China, against the background of climate change during the Holocene. Quatern Int, 218: 166-175
[3]  Lombi E, Scheckel K G, Armstrong R D, et al. 2006. Speciation and distribution of phosphorus in a fertilized soil: A synchrotron-based investigation. Soil Sci Soc Am J, 70: 2038-2048
[4]  Neiva A M R, Silva M M V G, Antunes I M H R, et al. 2000. Phosphate minerals of some granitic rocks and associated quartz veins from Northern and Central Portugal. J Czech Geol Soc, 46: 35-44
[5]  李逊, 熊尚发. 1995. 贡嘎山海螺沟冰川退却迹地植被原生演替. 山地研究, 13: 109-115
[6]  刘瑾, 杨建军, 梁新强, 等. 2011. 同步辐射X射线吸收近边结构光谱技术在磷素固相形态研究中的应用. 应用生态学报, 22: 2757-2764
[7]  钟祥浩, 张文敬, 罗辑. 1999. 贡嘎山地区山地生态系统与环境特征. Ambio-人类环境杂志, 28: 648-654
[8]  Abrams M M, Jarrell W M. 1992. Bioavailability index for phosphorus using nonexchange resin impregnated membranes. Soil Sci Soc Am J, 56: 1532-1537
[9]  Ajiboye B, Akinremi O O, Hu Y et al. 2008. XANES speciation of phosphorus in organically amended and fertilized vertisol and mollisol. Soil Sci Soc Am J, 72: 1256-1262
[10]  Beauchemin S, Hesterberg D, Chou J, et al. 2003. Speciation of phosphorus in phosphorusenriched agricultural soils using X-ray adsorption near-edge spectroscopy and chemical fractionation. J Environ Qual, 32: 1809-1819
[11]  Cassagne N, Remaury M, Gauquelin T, et al. 2000. Formsand profile distribution of soil phosphorus in alpine Inceptisols and Spodosols (Pyrenees, France). Geoderma, 95: 161-172
[12]  Chapin F S, Walker L R, Fastie C L, et al. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecolo Monog, 64: 149-175
[13]  Cross A F, Schlesinge W H. 1995. A literature-review and evaluation of the Hedley fractionation-applications to the biogeochemical cycle of soil-phosphorus in natural ecosystems. Geoderma, 64: 197-214
[14]  Duci? V, Milovanovi? B, Durdi? S. 2011. Identification of recent factors that affect the formation of the upper tree line in eastern Serbia. Arch Biol Sci, 63: 825-830
[15]  Flicoteaux R, Lucas J. 1984. Weathering of phosphate minerals. In: Nriagu J O, Moore P B, eds. Phosphate Minerals. Berlin: Springer. 292-317
[16]  F?llmi K B, Arn K, Hosein R, et al. 2009. Biogeochemical weathering in sedimentary chronosequences of the Rh?ne and Oberaar Glaciers (Swiss Alps): Rates and mechanisms of biotite weathering. Geoderma, 151: 270-281
[17]  Gonsiorczyk T, Casper P, Koschel R. 1998. Phosphorus-binding forms in the sediments of oligotrophic and an eutrophic hardwater lake of Baltic Lake district (Germany). Water Sci Technol, 37: 51-58
[18]  He L, Tang Y. 2008. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena, 72: 259-269
[19]  Hedley M J, Stewart J W B, Chauhan B S. 1982. Changes in inorganic and organic soil phosphorus fractions by cultivation practices and laboratory incubation. Soil Sci Soc Am J, 46: 970-976
[20]  Hesterberg D, Zhou W, Huchison K J, et al. 1999. XAFS study of adsorbed and mineral forms of phosphate. J Synchrotron Rad, 6: 636-638
[21]  Hunger S, Sims J T, Sparks L. 2005. How accurate is the assessment of phosphorus pools in poultry litter by sequential extraction. J Environ Qual, 34: 382-389
[22]  Johnson A H, Frizano J, Vann D R. 2003. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia, 135: 487-499
[23]  Kar G, Hundal L S, Schoenau J, et al. 2011. DerekDirect chemical speciation of P in sequential chemical extraction residues using P K-edge X-ray absorption near-edge structure spectroscopy. Soil Sci, 176: 589-595
[24]  Kaňa J, Kopá?ek J. 2005. Impact of soil sorption charateristics and bedrock composition on phosphorus concentration in two Bohemian forest lakes. Water Air Soil Pollut, 173: 243-259
[25]  Peak D, Sims J T, Sparks S. 2002. Soild-state speciation of natural and alum-amended poultry litter using XANES spectroscopy. Environ Sci Technol, 36: 4253-4261
[26]  Prietzel J, Dümig A, Wu Y H, et al. 2013. Phosphorus K-edge XANES spectroscopy reveals rapid changes of P speciation in the topsoil of two glacier foreland chronosequences. Geochim Cosmochim Acta, 108: 154-171
[27]  Ravel B, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Rad, 12: 537-541
[28]  Reynolds C S, Davies P S. 2001. Sources and bioavailability of phosphorus fractions in freshwater: A British perspective. Biological Rev Cambridge Phil Soc, 76: 27-64
[29]  Sala O E, Chapin F S, Armesto J J, et al. 2000. Global biodiversity scenarios for the year 2100. Science, 287: 1770-1774
[30]  Smil V. 2000. Phosphorus in the environment: Natural flows and human interferences. Annu Rev Energy Environ, 25: 53-88
[31]  Tiessen H, Moir J. 1993. Characterization of available P by sequential extraction. In: Carter M R, ed. Soil Sampling and Methods of Analysis. Lewis Publishers. 75-86
[32]  Turner B L, Condron L M, Richardson S J, et al. 2007. Soil organic phosphorus transformations during pedogenesis. Ecosystems, 10: 1166-1181
[33]  Vitousek P M, Poder S, Houlton R Z, et al. 2010. Terrestrial phosphorus limitation: Mechanism, implication, and nitrogen-phosphorus interactions. Ecol Appl, 20: 5-15
[34]  Walker T W, Syers J K. 1976. The fate of phosphorus during pedogenesis. Geoderma, 15: 1-19
[35]  Wu Y H, Zhou J, Yu D, et al. 2013. Phophorus biogeochemical cycle research in mountainous ecosystem. J Mount Sci, 10: 43-53
[36]  Zhou J, Wu Y H, Prietzel J, et al. 2013. Changes of soil phosphorus stocks and speciation along a 120-yr soil chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China). Geoderma, 195-196: 251-259

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133