[1] | Allègre C J, Turcotte D L. 1986. Implications of a two-component marble-cake mantle. Nature, 323: 123-127
|
[2] | Bahr K, Duba A. 2000. Is the asthenosphere electrically anisotropic? Earth Planet Sci Lett, 178: 87-95
|
[3] | Bahr K, Simpson F. 2002. Electrical anisotropy below slow- and fast-moving plates: Palaeoflow in the upper mantle? Science, 295: 1270-1272
|
[4] | Bell D R, Rossman G R, Moore R O. 2004. Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery kimberlite, South Africa. J Petrol, 45: 1539-1564
|
[5] | Boerner D E, Kurtz R D, Craven J A, et al. 1999. Electrical conductivity in the Precambrian lithosphere of western Canada. Science, 283: 668-670
|
[6] | Buffett B A, Garnero E J, Jeanloz R. 2000. Sediments at the top of Earth''s core. Science, 290: 1338-1342
|
[7] | Constable S. 2006. SEO3: A new model of olivine electrical conductivity. Geophys J Int, 166: 435-437
|
[8] | Dai L, Karato S I. 2009a. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere. P Jpn Acad B-Phys, 85: 466-475
|
[9] | Dai L, Karato S I. 2009b. Electrical conductivity of pyrope-rich garnet at high temperature and high pressure. Phys Earth Planet Inter, 176: 83-88
|
[10] | Dai L, Karato S I. 2009c. Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet Sci Lett, 287: 277-283
|
[11] | Du Frane W L, Roberts J J, Toffelmier D A, et al. 2005. Anisotropy of electrical conductivity in dry olivine. Geophys Res Lett, 32, doi: 10.1029/2005GL023879
|
[12] | Evans R L, Hirth G, Baba K, et al. 2005. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature, 437: 249-252
|
[13] | Evans R L, Jones A G, Garcia X, et al. 2011. The electrical lithosphere beneath the Kaapvaal Craton, Southern Africa. J Geophys Res, 116, doi: 10.1029/2010JB007883
|
[14] | Gaillard F, Malki M, Iacono-Marziano G, et al. 2008. Carbonatite melts and electrical conductivity in the asthenosphere. Science, 322: 1363-1365
|
[15] | Haak V, Hutton V R S. 1986. Electrical conductivity in the continental lower crust. In: Dawson J B, Hall J, Wedepohl K H, eds. The Nature of the Lower Continental Crust. Geol Soc London Spec Publ, 24: 35-49
|
[16] | Hermance J F. 1995. Electrical conductivity models of the crust and mantle. In: Ahrens T J, ed. Global Earth Physics: A Handbook of Physical Constants. Washington D C: American Geophysical Union. 190-205
|
[17] | Hinze E, Will G, Cemic L. 1981. Electrical conductivity measurements on synthetic olivines and on olivine, enstatite and diopside from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure. Phys Earth Planet Inter, 25: 245-254
|
[18] | Hirsch L M, Shankland T J, Duba A G. 1993. Electrical conduction and polaron mobility in Fe-bearing olivine. Geophys J Int, 114: 36-44
|
[19] | Hirschmann M M. 2010. Partial melt in the oceanic low velocity zone. Phys Earth Planet Inter, 179: 60-71
|
[20] | Hirth G, Evans R L, Chave A D. 2000. Comparison of continental and oceanic mantle electrical conductivity: Is the Archean lithosphere dry? Geochem Geophys Geosyst, doi: 10.1029/2000GC000048
|
[21] | Holme R. 1998. Electromagnetic core-mantle coupling, I, explaining decadal changes in the length of day. Geophys J Int, 132: 167-180
|
[22] | Huang X, Xu Y, Karato S I. 2005. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434: 746-749
|
[23] | Huebner J S, Dillenburg R G. 1995. Impedance spectra of hot, dry silicate minerals and rock: Qualitative interpretation of spectra. Am Miner, 80: 46-64
|
[24] | Huebner J S, Duba A, Wiggins L B. 1979. Electrical conductivity of pyroxene which contains trivalent cations: laboratory measurements and the Lunar temperature profile. J Geophys Res, 84: 4652-4656
|
[25] | Huebner J S, Voigt D E. 1988. Electrical conductivity of diopside: Evidence for oxygen vacancies. Am Miner, 73: 1235-1254
|
[26] | Jones A G. 1992. Electrical properties of the lower continental crust. In: Fountain D M, Arculus R J, Kay R W, eds. Continental Lower Crust. Amsterdam: Elsevier. 81-143
|
[27] | Jones A G, Lezaeta P, Ferguson I J, et al. 2003. The electrical structure of the Slave craton. Lithos, 71: 505-527
|
[28] | Karato S. 1990. The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347: 272-273
|
[29] | Katsura T, Sato K, Ito E. 1998. Electrical conductivity of silicate perovskite at lower-mantle conditions. Nature, 395: 493-495
|
[30] | Kohlstedt D L, Keppler H, Rubie D C. 1996. Solubility of water in the α, β, and γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol, 123: 345-357
|
[31] | Li X, Jeanloz R. 1990. Laboratory studies of the electrical conductivity of silicate perovskite at high pressures and temperatures. J Geophys Res, 95: 5067-5078
|
[32] | Mareschal M, Kellet R L, Kurtz R D, et al. 1995. Archean cratonic roots, mantle shear zones and deep electrical anisotropy. Nature, 375: 134-137
|
[33] | McCammon C. 2005. The paradox of mantle redox. Science, 308: 807-808
|
[34] | Murakami M, Hirose K, Kawamura K, et al. 2004. Post-perovskite phase transition in MgSiO3. Science, 304: 855-858
|
[35] | Naif S, Key K, Constable S, et al. 2013. Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature, 495: 356-359
|
[36] | Ohta K, Onoda S, Hirose K, et al. 2008. The electrical conductivity of post-perovskite in Earth''s D" layer. Science, 320: 89-91
|
[37] | Olsen N. 1999. Long-period (30 days-1 year) electromagnetic sounding and the electrical conductivity of the lower mantle beneath Europe. Geophys J Int, 138: 179-187
|
[38] | Peyronneau J, Poirier J P. 1989. Electrical conductivity of the Earth''s lower mantle. Nature, 342: 537-539
|
[39] | Poe B T, Romano C, Nestola F, et al. 2010. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa. Phys Earth Planet Inter, 181: 103-111
|
[40] | Reynard B, Mibe K, Van de Moortele B. 2011. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth Planet Sci Lett, 307: 387-394
|
[41] | Romano C, Poe B T, Tyburczy J A, et al. 2009. Electrical conductivity of hydrous wadsleyite. Eur J Mineral, 21: 615-622
|
[42] | Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 33: 267-309
|
[43] | Schock R N, Duba A G, Shankland T J. 1989. Electrical conduction in olivine. J Geophys Res, 94: 5829-5839
|
[44] | Schulgasser K. 1977. Bounds on the conductivity of statistically isotropic polycrystals. J Phys C Solid State Phys, 10: 407-417
|
[45] | Seifert K F, Will G, Voigt R. 1982. Electrical conductivity measurements on synthetic pyroxenes MgSiO3-FeSiO3 at high pressures and temperatures under defined thermodynamic conditions. In: Schreyer W, ed. High-pressure Researches in Geoscience. Stuttgart: Schweizerbart''sche. 419-432
|
[46] | Shankland T J, Ander M E. 1983. Electrical conductivity, temperatures and fluids in the lower crust. J Geophys Res, 88: 527-538
|
[47] | Shankland T J, O''Connell R J, Waff H S. 1981. Geophysical constraints on partial melt in the upper mantle. Rev Geophys, 19: 394-406
|
[48] | Shankland T J, Waff H S. 1977. Partial melting and electrical conductivity anomalies in the upper mantle. J Geophys Res, 82: 5409-5417
|
[49] | Simpson F. 2001. Resistance to mantle flow inferred from the electromagnetic strike of the Australian upper mantle. Nature, 412: 632-634
|
[50] | Smyth J R. 1987. b-Mg2SiO4: A potential host for water in the mantle. Am Miner, 72: 1051-1055
|
[51] | Sobolev A V, Hofmann A W, Kuzmin D V, et al. 2007. The amount of recycled crust in sources of mantle-derived melts. Science, 316: 412-417
|
[52] | Sobolev A V, Hofmann A W, Sobolev S V, et al. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434: 590-597
|
[53] | Tyburczy J A. 2007. Properties of rocks and minerals—The electrical conductivity of rocks, minerals and the Earth. In: Davice G D, ed. Mineral Physics-Treatise on Geophysics. Amsterdam: Elsevier. 631-642
|
[54] | Wang D, Guo Y, Yu Y, et al. 2012. Electrical conductivity of amphibole-bearing rocks: influence of dehydration. Contrib Mineral Petrol, 164: 17-25
|
[55] | Wang Z C, Ji S C, Dresen G. 1999. Hydrogen enhanced electrical conductivity of diopside crystals. Geophy Res Lett, 26, 799-802
|
[56] | Wang D, Mookherjee M, Xu Y, et al. 2006. The effect of water on the electrical conductivity of olivine. Nature, 443: 977-980
|
[57] | Wood B J, Rubie D C. 1996. The effect of alumina on phase transformations at the 660 km discontinuity from Fe-Mg partitioning experiments. Science, 273: 1522-1524
|
[58] | Xu Y, McCammon C, Poe B T. 1998a. The effect of alumina on the electrical conductivity of silicate perovskite. Science, 282: 922-924
|
[59] | Xu Y, Poe B T, Shankland T J, et al. 1998b. Electrical conductivity of olivine, wadsleyite and ringwoodite under upper-mantle conditions. Science, 280: 1415-1418
|
[60] | Xu Y, Shankland T J. 1999. Electrical conductivity of orthopyroxene and its high pressure phases. Geophy Res Lett, 26: 2645-2648
|
[61] | Xu Y, Shankland T J, Duba A G. 2000a. Pressure effect on electrical conductivity of mantle olivine. Phys Earth Planet Inter, 118: 149-161
|
[62] | Xu Y, Shankland T J, Poe B T. 2000b. Laboratory-based electrical conductivity in the Earth''s mantle. J Geophys Res, 105: 27865-27875
|
[63] | Yang X. 2011. Origin of high electrical conductivity in the lower continental crust: A review. Surv Geophys, 32: 875-903
|
[64] | Yang X. 2012. Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle. Earth Planet Sci Lett, 317-318: 241-250
|
[65] | Yang X, Keppler H, McCammon C, et al. 2012. Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol, 163: 33-48
|
[66] | Yang X, Keppler H, McCammon C, et al. 2011. The effect of water on the electrical conductivity of lower crustal clinopyroxene. J Geophys Res, 116, doi: 04210.01029/02010JB008010
|
[67] | Yang X, McCammon C. 2012. Fe3+-rich augite and high electrical conductivity in the deep lithosphere. Geology, 2: 131-134
|
[68] | Yoshino T. 2010. Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys, 31: 163-206
|
[69] | Yoshino T, Laumonier M, McIsaac E, et al. 2010. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle. Earth Planet Sci Lett, 295: 593-602
|
[70] | Yoshino T, Manthilake G, Matsuzaki T, et al. 2008. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451: 326-329
|
[71] | Yoshino T, Matsuzaki T, Shatskiy A, et al. 2009. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle. Earth Planet Sci Lett, 288: 291-300
|
[72] | Yoshino T, Matsuzaki T, Yamashita S, et al. 2006. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature, 443: 973-976
|
[73] | Zhang B H, Yoshino T, Wu X P, et al. 2012. Electrical conductivitity of enstatite as a function of water content: Implications for the electrical structure in the upper mantle. Earth Planet Sci Lett, 357-358: 11-20
|