全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国高层大气与电离层耦合研究进展

, PP. 1863-1883

Keywords: 高层大气,电离层,垂直耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

?近年来,地球高层大气与电离层之间的耦合研究为众多学者所关注.在回顾这一领域国际上若干研究方向进展的基础上,着重介绍了中国学者的近期研究工作与贡献.首先,扼要介绍了中国高层大气观测的新发展,包括激光雷达、FP干涉仪、全天空气辉成像仪等光学探测,MST雷达、全天空流星雷达等无线电探测手段.在高层大气变化特性研究中,介绍了高层大气的气候学及各种大气波动的研究进展.在高层大气与低电离层的耦合研究方面,介绍了突发钠层及低热层钠层的观测研究和钠层模式的研究进展,以及突发E层与大气行星波之间的耦合研究工作.在高层大气波动过程与电离层F2层耦合研究中,着重介绍了电离层四波经度结构与高层大气非迁移潮汐之间的耦合特性与机理研究.在热层与电离层耦合的研究方向上,介绍了热层背景大气风场和重力波对电离层的作用、带电粒子对赤道热层的影响与热层赤道异常的形成机理研究等热层电离层相互耦合工作.综合认为,近年来中国学者在高层大气与电离层耦合的研究领域进行了大量工作,包括实验观测及数据分析、模式化与理论研究等.中国学者取得的研究成果为这一领域近年来的进展与突破做出了重要贡献.

References

[1]  姜国英, 徐寄遥, 史建魁, 等. 2010. 我国海南上空中高层大气潮汐风场的首次观测分析. 科学通报, 55: 923-930
[2]  刘立波, 万卫星, 陈一定, 等. 2011. 电离层与太阳活动性关系. 科学通报, 56: 477-487
[3]  穆文锋, 万卫星, 任志鹏, 等. 2011. 电离层经度变化波数谱成分与高层大气潮汐模的相关性. 科学通报, 56: 35-43
[4]  涂翠, 胡雄, 闫召爱, 等. 2009. 中国首次中层顶大气重力波成像观测实验. 科学通报, 54: 3784-3789
[5]  Ding F, Wan W X, Xu G R, et al. 2011. Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China. J Geophys Res, 116: A09327
[6]  Ding F, Wan W X, Ning B Q, et al. 2012. Two-dimensional imaging of large-scale traveling ionospheric disturbances over China based on GPS data. J Geophys Res, 117: A08318
[7]  Ding F, Wan W X, Ning B Q, et al. 2013. Observations of poleward-propagating large-scale traveling ionospheric disturbances in southern China. Ann Geophys, 31: 377-385
[8]  Ding F, Wan W X, Mao T, et al. 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys Res Lett, 41, doi: 10.1002/2014GL060107
[9]  Dou X K, Li T, Xu J Y, et al. 2009a. Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations. J Geophys Res, 114: D20103
[10]  Dou X K, Xue X H, Chen T D, et al. 2009b. A statistical study of sporadic sodium layer observed by sodium lidar at Hefei (31.8°N, 117.3°E). Ann Geophys, 27: 2247-2257
[11]  Dou X K, Xue X H, Li T, et al. 2010a. Possible relations between Meteors, enhanced electron density layers and sporadic sodium layers. J Geophys Res, 115: A06311
[12]  Dou X K, Li T, Tang Y H, et al. 2010b. Variability of gravity wave occurrence frequency and propagation direction in the upper mesosphere observed by the OH imager in Northern Colorado. J Atmos Sol-Terr Phy, 72: 457-462
[13]  Dou X K, Qiu S C, Xue X H, et al. 2013. Sporadic and thermospheric enhanced sodium layers observed by a lidar chain over China. J Geophys Res-Space, 118: 6627-6643
[14]  Feng W H, Marsh D R, Chipperfield M P, et al. 2013. A global atmospheric model of meteoric iron. J Geophys Res, 118: D50708
[15]  Forbes J M, Palo S E, Zhang X L. 2000. Variability of the ionosphere. J Atmos Sol-Terr Phy, 62: 685-693
[16]  Friedman J S, Chu X, Brum C G M, et al. 2013. Observation of a thermospheric descending layer of neutral K over Arecibo. J Atmos Sol-Terr Phy, doi: 10.1016/j.jastp.2013.03.002
[17]  Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys, 41: 1003
[18]  Gan Q, Zhang S D, Yi F. 2012. TIMED/SABER observations of lower mesospheric inversion layers at low and middle latitudes. J Geophys Res, 117: D07109
[19]  Garcia R R, Dunkerton T J, Lieberman R S, et al. 1997. Climatology of the semiannual oscillation of the tropical middle atmosphere. J Geophys Res, 102: 26019-26032
[20]  Gardner C S, Voelz D G. 1987. Lidar studies of the nighttime sodium layer over Urbana, Illinois, 2: Gravity waves. J Geophys Res, 92: 4673-4693
[21]  Gong S H, Yang G T, Xu J Y, et al. 2013. Statistical characteristics of atmospheric gravity wave in the mesopause region observed with a sodium lidar at Beijing, China. J Atmos Sol-Terr Phy, 97: 143-151
[22]  Gong S S, Yang G T, Wang J M, et al. 2003. A double sodium layer event observed over Wuhan China by lidar. Geophys Res Lett, 30: 1209
[23]  Gong Y, Zhou Q H. 2011. Incoherent scatter radar study of the terdiurnal tide in the E- and F-region heights at Arecibo. Geophys Res Lett, 38: L15101
[24]  Gong Y, Zhou Q H, Zhang S D. 2013. Atmospheric tides in the low latitude E- and F-region and their response to a sudden stratospheric warming in January 2010. J Geophys Res-Space, 118: 7913-7927
[25]  Gu S Y, Li T, Dou X K, et al. 2013a, Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI. J Geophys Res-Atmos, 118: 1624-1639
[26]  Gu S Y, Li T, Dou X K, et al. 2013b. Long-term observations of the quasi two-day wave by Hawaii MF radar. J Geophys Res-Space, 118: 7886-7894
[27]  Guo J P, Wan W X, Forbes J M, et al. 2007. Effects of solar variability on thermosphere density from CHAMP accelerometer data. J Geophys Res, 112: A10308
[28]  Hao Y Q, Xiao Z, Zhang D H. 2012. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake. J Geophys Res, 117: A02305
[29]  He M S, Liu L B, Wan W X, et al. 2009. A study of the Weddell Sea Anomaly observed by FORMOSAT-3/COSMIC. J Geophys Res, 114: A12309
[30]  He M S, Liu L B, Wan W X, et al. 2010. Longitudinal modulation of the O/N2 column density retrieved from TIMED/GUVI measurement. Geophys Res Lett, 37: L20108
[31]  H?ffner J, Friedman J S. 2004. Metal layers at high altitudes: A possible connection to meteoroids. Atmos Chem Phys Discuss, 4: 399-417
[32]  H?ffner J, Friedman J S. 2005. The mesospheric metal layer topside: Examples of simultaneous metal observations. J Atmos Sol-Terr Phy, 67: 1226-1237
[33]  Holton J R. 1982. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci, 39: 791-799
[34]  Huang K M, Zhang S D, Yi F, et al. 2013a. Third-order resonant interaction of atmospheric gravity waves. J Geophys Res-Atmos, 118: 2197-2206
[35]  Huang K M, Liu A Z, Lu X, et al. 2013b. Nonlinear coupling between quasi two-day wave and tides based on meteor radar observations at Maui. J Geophys Res, 118: 10936-10943
[36]  Huang K M, Liu A Z, Zhang S D, et al. 2013c. A strong nonlinear interaction event between 16-day wave and diurnal tide from meteor radar observations. Ann Geophys, 31: 2039-2048
[37]  Huang Y Y, Zhang S D, Yi F, et al. 2013. Global climatological variability of quasi-two-day waves revealed by SABER/TIMED observations. Ann Geophys, 31: 1061-1075
[38]  Immel T J, Sagawa E, England S L, et al. 2006. Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett, 33: L15108
[39]  Jiang G Y, Xu J Y, Xiong J, et al. 2008. A case study of the mesospheric 6.5-day wave observed by radar systems. J Geophys Res, 113: D16111
[40]  Jiang G Y, Xu J Y, Franke S J. 2009. The 8-h tide in the mesosphere and lower thermosphere over Maui (20.75°N, 156.43°W). Ann Geophys, 27: 1989-1999
[41]  Jiang G Y, Xu J Y, Yuan W, et al. 2012. A comparison of mesospheric winds measured by FPI and meteor radar located at 40oN. Sci China Tech Sci, 55: 1245-1250
[42]  Killeen T L, Skinner W R, Johnson R M, et al. 1999. The TIMED doppler interferometer (TIDI). Proc SPIE, 3756: 289-303
[43]  Killeen T L, Wu Q, Solomon S C, et al. 2005. TIMED Doppler interferometer: Overview and recent results. J Geophys Res, 111: A10S01
[44]  Leblanc T, McDermid I S, Keckhut P, et al. 1998. Temperature climatology of the middle atmosphere from long-term lidar measurements at middle and low latitudes. J Geophys Res, 103: 17191-17204
[45]  Lei J H, Thayer J P, Forbes J M. 2010a. Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly. J Geophys Res, 115: A08311
[46]  Lei J H, Thayer J P, Burns A G, et al. 2010b. Wind and temperature effects on thermosphere mass density response to the November 2004 geomagnetic storm. J Geophys Res, 115: A05303
[47]  Lei J H, Thayer J P, Wang W, et al. 2012a. Simulations of the equatorial thermosphere anomaly: Field-aligned ion drag effect. J Geophys Res, 117: A01304
[48]  Lei J H, Thayer J P, Wang W, et al. 2012b. Simulations of the equatorial thermosphere anomaly: Physical mechanisms for crest formation. J Geophys Res, 117: A06318
[49]  Lei J H, Matsuo T, Dou X, et al. 2012c. Annual and semiannual variations of thermospheric density: EOF analysis of CHAMP and GRACE data. J Geophys Res, 117: A01310
[50]  Lei J H, Burns A G, Thayer J P, et al. 2012d. Overcooling in the upper thermosphere during the recovery phase of the 2003 October storms. J Geophys Res, 117: A03314
[51]  Lei J H, Dou X K, Burns A G, et al. 2013. Annual asymmetry in thermospheric density: Observations and simulations. J Geophys Res-Space, 118: 2503-2510
[52]  Li G Z, Ning B Q, Liu L B, et al. 2008. Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal E×B drifts at solar maximum. Radio Sci, 43: RS4005
[53]  Li G Z, Ning B Q, Abdu M A, et al. 2012. Precursor signatures and evolution of post-sunset equatorial spread-F observed over Sanya. J Geophys Res, 117: A08321
[54]  Li G Z, Ning B Q, Abdu M A, et al. 2013a. Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia. J Geophys Res-Space, 118: 6544-6557
[55]  Li G Z, Ning B Q, Patra A K, et al. 2013b. On the linkage of daytime 150km echoes and abnormal intermediate layer traces over Sanya. J Geophys Res-Space, 118: 7262-7267
[56]  Li Q, Xu J Y, Yue J, et al. 2011. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong, in northern China. Ann Geophys, 29: 1401-1410
[57]  Li Q, Xu J Y, Yue J, et al. 2013. Investigation of a mesospheric bore event over northern China. Ann Geophys, 31: 409-418
[58]  Li T, She C Y, Liu H L, et al. 2007. Evidence of a gravity wave breaking event and the estimation of wave characteristics from sodium lidar observation over Fort Collins, CO (41°N, 105°W). Geophys Res Lett, 34: L05815
[59]  Liu X, Xu J Y, Yue J, et al. 2013. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere. Ann Geophys, 31: 1-14
[60]  Luan X L, Dou X K, Lei J H, et al. 2012. Terdiurnal migrating-tide signature in ionospheric total electron content. J Geophys Res, 117: A11302
[61]  Luan X L, Dou X K. 2013. Seasonal dependence of the longitudinal variations of nighttime ionospheric electron density and equivalent winds at southern midlatitudes. Ann Geophys, 31: 1699-1708
[62]  Ma R P, Xu J Y, Wang W B, et al. 2010. Variations of the nighttime thermospheric mass density at low and middle latitudes. J Geophys Res, 115: A12301
[63]  Marsh D R, Janches D, Feng W, et al. 2013. A global model of meteoric sodium. J Geophys Res-Atmos, 118: 11442-11452
[64]  Mo X H, Zhang D H, Goncharenko L P, et al. 2014. Quasi-16-day periodic meridional movement of the equatorial ionization anomaly. Ann Geophys, 32: 121-131, doi:10.5194/angeo-32-121-2014
[65]  Niciejewski R J, Killeen T L, Turnbull M. 1994. Ground-based fabry-perot interferometry of the terrestrial nightglow with a bare charge-coupled device: Remote field site deployment. Opt Eng, 33: 457-465
[66]  Ren Z P, Wan W X, Liu L B, et al. 2008. Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere. Geophys Res Lett, 35: L05108
[67]  Ren Z P, Wan W X, Liu L B. 2009b. GCITEM-IGGCAS: A new global coupled ionosphere-thermosphere-electro dynamics model. J Atmos Sol-Terr Phy, 71: 2064-2076
[68]  Ren Z P, Wan W X, Xiong J G, et al. 2010. Simulated wave number 4 structure in equatorial F-region vertical plasma drifts. J Geophys Res, 115: A05301
[69]  Ren Z P, Wan W X, Liu L B. et al. 2011a. Simulated longitudinal variations in the lower thermospheric nitric oxide induced by nonmigrating tides. J Geophys Res, 116: A04301
[70]  Ren Z P, Wan W X, Liu L B. et al. 2011b. Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F-region plasma density. J Geophys Res, 116: A02308
[71]  Ren Z P, Wan W X, Liu L B. et al. 2012a. Simulated longitudinal variations in the E-region plasma density induced by non-migrating tides. J Atmos Sol-Terr Phy, 90-91: 68-76
[72]  Ren Z P, Wan W X, Xiong J G. et al. 2012b. Simulated equinoctial asymmetry of the ionospheric vertical plasma drifts. J Geophys Res, 117: A01301
[73]  Ren Z P, Wan W X, Liu L B. et al. 2012c. Simulated midlatitude summer nighttime anomaly in realistic geomagnetic fields. J Geophys Res, 117: A03323
[74]  Richmond A D, Lu G. 2000. Upper-atmospheric effects of magnetic storms: A brief tutorial. J Atmos Sol-Terr Phy, 62: 1115-1127
[75]  Rishbeth H. 2006. F-region links with the lower atmosphere? J Atmos Sol-Terr Phy, 68: 469-478
[76]  Rishbeth H, Mendillo M. 2001. Patterns of F2-layer variability. J Atmos Sol-Terr Phy, 63: 1661-1680
[77]  Robert F, Pfaff R F. 2012. The near-earth plasma environment. Space Sci Rev, 168: 23-112
[78]  Ruan H B, Lei J H, Dou X K, et al. 2013. Enhancements of nighttime neutral and ion temperatures in the Fregion over Millstone Hill. J Geophys Res-Space, 118: 1768-1776
[79]  Russell III J M, Mlynczak M G, Gordley L L, et al. 1999. Overview of the SABER experiment and preliminary calibration results. Proc SPIE, 3756: 277-288
[80]  Sagawa E T, Immel J, Frey H U, et al. 2005. Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J Geophys Res, 110: A11302
[81]  Schmieder B, Vincent B, Baumjohann W, et al. 2004. Climate and weather of the sun-earth system: Cawses. Adv Space Res, 34: 443-448
[82]  Shu Z F, Dou X K, Xia H Y, et al. 2012. Low stratospheric wind measurement using mobile rayleigh doppler wind lidar. J Opt Soc Korea, 16: 141-144
[83]  Xiao Z, Xiao S G, Hao Y Q, et al. 2007. Morphological features of ionospheric response to typhoon. J Geophys Res, 112: A04304
[84]  Xiao S G, Xiao Z, Shi J K, et al. 2009. Observational facts in revealing a close relation between acoustic-gravity waves and midlatitude spread F. J Geophys Res, 114: A01303
[85]  Xiong J G, Wan W X, Ning B Q, et al. 2004. First results of the tidal structure in the MLT revealed by Wuhan meteor radar (30°40''N, 114°30''E). J Atmos Sol-Terr Phy, 66: 675-682
[86]  Xiong J G, Wan W X, Ding F, et al. 2013. Coupling between mesosphere and ionosphere over Beijing through semidiurnal tides during the 2009 sudden stratospheric warming. J Geophys Res-Space, 118: 2511-2521
[87]  Xu G R, Wan W X, She C L, et al. 2008. The relationship between ionospheric total electron content (TEC) over East Asia and the tropospheric circulation around the Qinghai-Tibet Plateau obtained with a partial correlation method. Adv Space Res, 42: 219-223
[88]  Xu J Y, Smith A K. 2003a. Perturbations of the sodium layer: Controlled by chemistry or dynamics? Geophys Res Lett, 30: 2056, doi: 10.1029/2003GL018040.
[89]  Xu J Y, Smith A K, Ma R. 2003b. A numerical study of the effect of gravity-wave propagation on minor species distributions in the mesopause region. J Geophys Res-Atmos, 108: 4119
[90]  Xu J Y, Smith A K. 2005a. Evaluation of processes that affect the photochemical timescale of the sodium layer. J Atmos Sol-Terr Phy, 67: 1216-1225
[91]  Xu J Y, Smith A K, Wu Q. 2005b. A retrieval algorithm for satellite remote sensing of the nighttime global distribution of the sodium layer. J Atmos Sol-Terr Phy, 67: 739-748
[92]  Xu J Y, She C Y, Yuan W, et al. 2006a. Comparison between the temperature measurements by TIMED/SABER and lidar in the midlatitude. J Geophys Res, 111: A10S09
[93]  Xu J Y, Smith A K, Collins R L, et al. 2006b. Signature of an overturning gravity wave in the mesospheric sodium layer: Comparison of a nonlinear photochemical-dynamical model and lidar observations. J Geophys Res, 111: D17301
[94]  Xu J Y, Liu H L, Yuan W, et al. 2007a. Mesopause structure from termosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J Geophys Res, 112: D09102
[95]  Xu J Y, Smith A K, Yuan W, et al. 2007b. Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J Geophys Res, 112: D24106
[96]  Xu J Y, Smith A K, Liu H L, et al. 2009a. Seasonal and quasi-biennial variations in the migrating diurnal tide observed by thermosphere, ionosphere, mesosphere, energetics and dynamics (TIMED). J Geophys Res, 114: D13107
[97]  Xu J Y, Smith A K, Liu H L, et al. 2009b. Estimation of the equivalent rayleigh friction in mesosphere/lower thermosphere region from the migrating diurnal tides observed by TIMED. J Geophys Res, 114: D23103
[98]  Xu J Y, Smith A K, Jiang G Y, et al. 2010a. Seasonal variation of the hough modes of the diurnal component of ozone heating evaluated from aura microwave limb sounder observations. J Geophys Res, 115: D10110
[99]  Xu J Y, Smith A K, Jiang G Y, et al. 2010b. Strong longitudinal variations in the OH nightglow. Geophys Res Lett, 37: L21801
[100]  Xu J Y, Smith A K, Jiang G Y, et al. 2012a. Features of the seasonal variation of the semidiurnal, terdiurnal and 6-h components of ozone heating evaluated from Aura/MLS observations. Ann Geophys, 30: 259-281
[101]  Xu J Y, Gao H, Smith A K, et al. 2012b. Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region. J Geophys Res, 117: D02301
[102]  Xu J Y, Wang W B, Gao H. 2013a. The longitudinal variation of the daily mean thermospheric mass density. J Geophys Res-Space, 118: 515-523
[103]  Xu J Y, Smith A K, Wang W B, et al. 2013b. An observational and theoretical study of the longitudinal variation in neutral temperature induced by aurora heating in the lower thermosphere. J Geophys Res-Space, 118: 7410-7425
[104]  Xu J Y, Smith A K, Liu M H, et al. 2014. Evidence for nonmigrating tides produced by the interaction between tides and stationary planetary waves in the stratosphere and lower mesosphere. J Geophys Res-Atmos, 119: 471-489
[105]  Xu J S, Li X J, Liu Y W, et al. 2014. TEC differences for the mid-latitude ionosphere in both sides of the longitudes with zero declination. Adv Space Res, doi: dx.doi.org/10.1016/j.asr.2013.01.010
[106]  Xue X H, Wan W X, Xiong J G, et al. 2007. Diurnal tides in mesosphere/low-thermosphere during 2002 at Wuhan (30.6°N, 114.4°E) using canonical correlation analysis. J Geophys Res, 112: D06104
[107]  Xue X H, Wan W X, Xiong J G, et al. 2008. The characteristics of the semi-diurnal tides in mesosphere/low-thermosphere (MLT) during 2002 at Wuhan (30.6°N, 114.4°E)—Using canonical correlation analysis technique. Adv Space Res, 41: 1415-1422
[108]  Xue X H, Dou X K, Lei J H, et al. 2013. Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: Case studies. J Geophys Res-Space, 118: 2409-2418
[109]  Yee J H, Cameron G E, Kusnierkiewicz D Y. 1999. Overview of TIMED. Proc SPIE, 3756: 244-254
[110]  Yi F, Zhang S D, Yue X C, et al. 2008. Some ubiquitous features of the mesospheric Fe and Na layer borders from simultaneous and common- volume Fe and Na lidar observations. J Geophys Res, 113: A04S91
[111]  Yi F, Yu C M, Zhang S D, et al. 2009. Seasonal variations of the nocturnal mesospheric Na and Fe layers at 30°N. J Geophys Res, 114: D01301
[112]  Yi F, Zhang S D, Yu C M, et al. 2013. Simultaneous and common-volume three-lidar observations of sporadic metal layers in the mesopause region. J Atmos Sol-Terr Phy, 102: 172-184
[113]  Yu J R, She C Y. 1993. Lidar-observed temperature structures and gravity-wave perturbations of the mesopause region in the springs of 1990-1992 over Fort Collins, CO. Appl Phys B-Photo, 57: 231-238
[114]  Yu Y, Wan W X, Ning B Q, et al. 2013. Tidal wind mapping from observations of a meteor radar chain in december 2011. J Geophys Res-Space, 118: 2321-2332
[115]  Yuan W, Liu X, Xu J Y, et al. 2013. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07. Ann Geophys, 31: 1365-1378
[116]  Zhang S D, Yi F, Huang C M, et al. 2010. Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data. Ann Geophys, 28: 1065-1074
[117]  Zhang S D, Yi F, Huang C M, et al. 2012. High vertical resolution analyses of gravity waves and turbulence at a midlatitude station. J Geophys Res, 117: D02103
[118]  Zhang S D, Yi F, Huang C M, et al. 2013. Latitudinal and altitudinal variability of lower atmospheric inertial gravity waves revealed by U.S. radiosonde data. J Geophys Res-Atmos, 118: 7750-7764
[119]  Zhang Y, Xiong J G, Liu L B, et al. 2012. A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. J Geophys Res, 117: D21101, doi:10.1029/2012JD017676
[120]  Zhao B Q, Wan W X, Liu L B, et al. 2008. Anomalous enhancement of ionospheric electron content in the Asian-Australian region during a geomagnetically quiet day. J Geophys Res, 113: A11302
[121]  Zhao B Q, Wan W X, Reinisch B, et al. 2011a. Features of the F3 layer in the low-latitude ionosphere at sunset. J Geophys Res, 116: A01313
[122]  Zhao B Q, Wan W X, Yue X A, et al. 2011b. Global characteristics of occurrence of an additional layer in the ionosphere observed by COSMIC/FORMOSAT-3. Geophys Res Lett, 38: L02101
[123]  Zhao B Q, Wang M, Wang Y G, et al. 2013. East-west differences inf-region electron density at midlatitude: Evidence from the far east region. J Geophys Res-Space, 118: 542-553
[124]  Zhao G X, Liu L B, Ning B Q, et al. 2005a. The terdiurnal tide in the mesosphere and lower thermosphere over wuhan (30°N, 114°E). Earth Planets Space, 57: 393-398
[125]  Zhao G X, Liu L B, Wan W X, et al. 2005b. Seasonal behavior of meteor radar winds over wuhan. Earth Planets Space, 57: 61-70
[126]  Zhao L, Chen J S, Ding Z H, et al. 2012. First observations of tidal oscillations by an MF radar over Kunming (25.6°N 103.8°E). J Atmos Sol-Terr Phy, 78-79: 44-52
[127]  Zhu Y J, Xu J Y, Yuan W, et al. 2012. First experiment of spectrometric observation of hydroxyl emission and rotational temperature in the mesopause in China. Sci China Tech Sci, 55: 1312-1318
[128]  Zuo X M, Wan W X. 2008. Planetary wave oscillations in sporadic E layer occurrence at Wuhan. Earth Planets Space, 60: 647-652
[129]  Zuo X M, Wan W X, Zhao G X. 2009. An attempt to infer information on planetary wave by analyzing sporadic E layers observations. Earth Planets Space, 61: 1185-1190
[130]  陈丹, 陈泽宇, 吕达仁. 2011. 台风"麦莎"(Matsa)诱发平流层重力波的数值模拟. 中国科学: 地球科学, 41: 1786-1794
[131]  陈泽宇, 吕达仁. 2008. DE3潮汐的全球结构. 科学通报, 53: 2940-2946
[132]  龚顺生, 曾锡之, 薛新建, 等. 1997. 中国武汉上空钠层的首次激光雷达观测. 中国科学A 辑, 40: 369-373
[133]  袁韦华, 徐寄遥, 马瑞平, 等. 2010. 我国光学干涉仪对中高层大气风场的首次观测. 科学通报, 55: 3378-3383
[134]  Abdu M A, Pancheva D, Bhattacharyya A. 2011. Aeronomy of the Earth''s Atmosphere and Ionosphere. Heidelberg: Springer
[135]  Andrews D G, Holton J R, Leovy C B. 1987. Middle Atmosphere Dynamics. San Diego: Academic Press
[136]  Basu S, Pallamraju D. 2006. Science rationale for CAWSES (Climate and Weather of the Sun-Earth System): SCOSTEP''s interdisciplinary program for 2004-2008. Adv Space Res, 38: 1781-1791
[137]  Chapman S, Lindzen R S. 1970. Atmospheric Tides. Norwell: Reidel Mass
[138]  Chen L, Yi F. 2011. Average properties and small-scale variations of the mesospheric Na and Fe layers as observed simultaneously by two closely collocated lidars at 30°N. Ann Geophys, 29: 1037-1048
[139]  Christensen A B, Walterscheid R L, Ross M N, et al. 1994. Global Ultraviolet Imager (GUVI) for the NASA Thermosphere-Ionosphere- Mesosphere Energetics and Dynamics (TIMED) mission. Proc SPIE, 2266: 451-466
[140]  Collins S C, Plane J M C, Kelley M C, et al. 2002. A study of the role of ion-molecule chemistry in the formation of sporadic sodium layers. J Atmos Sol-Terr Phy, 64: 845-860
[141]  Chu X Z, Yu Z B, Gardner C S, et al. 2011. Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110-155 km) at McMurdo (77.8°S, 166.7°E), Antarctica. Geophys Res Lett, 38: L23807
[142]  Holton J R, Alexander M J. 2000. The role of waves in the transport circulation of the middle atmosphere. In: Atmospheric Science Across the Stratopause. Geophys Monogr Ser, 123: 21-35
[143]  Huang C M, Zhang S D, Yi F. 2009. Intensive radiosonde observations of the diurnal tide and planetary waves in the lower atmosphere over Yichang (111°18''E, 30°42''N). Ann Geophys, 27: 1079-1095
[144]  Huang C M, Zhang S D, Zhou Q, et al. 2012. Atmospheric waves and their interactions in the thermospheric neutral wind as observed by the Arecibo incoherent scatter radar. J Geophys Res, 113: D02102
[145]  Huang C M, Zhang S D, Yi F, et al. 2013. Frequency variations of gravity waves interacting with a time-varying tide. Ann Geophys, 31: 1731-1743
[146]  Huang K M, Zhang S D, Yi F. 2009. Gravity wave excitation through resonant interaction in a compressible atmosphere. Geophys Res Lett, 36: L01803
[147]  Huang K M, Zhang S D, Yi F. 2010. Reflection and transmission of atmospheric gravity waves in a stably sheared horizontal wind field. J Geophys Res, 115: D16103
[148]  Huang K M, Liu A Z, Zhang S D, et al. 2012. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions. Ann Geophys, 30: 303-315
[149]  Lei J H, Forbes J M, Liu H L, et al. 2011. Latitudinal variations of middle thermosphere: Observations and modeling. J Geophys Res, 116: A12306
[150]  Li T, Leblanc T, McDermid I S. 2008. Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.5°N, 155.6°W). J Geophys Res, 113: D14109
[151]  Li T, She C Y, Liu H L, et al. 2009. Observation of local tidal variability and instability, along with dissipation of diurnal tidal harmonics in the mesopause region over Fort Collins, CO (41°N, 105°W). J Geophys Res, 114: D06106
[152]  Li T, Leblanc T, McDermid I S, et al. 2010. Seasonal and inter-annual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. J Geophys Res, 115: D13103
[153]  Li T, Leblanc T, McDermid I S, et al. 2011. Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations. J Geophys Res, 116: D00P05
[154]  Li T, Fang X, Liu W, et al. 2012a. Narrowband sodium lidar for the measurements of mesopause region temperature and wind. Appl Opt, 51: 5401-5411
[155]  Li T, Liu A Z, Lu X, et al. 2012b. Meteor-radar observed mesospheric semi-annual oscillation (SAO) and quasi-biennial oscillation (QBO) over Maui, Hawaii. J Geophys Res, 117: D05130
[156]  Li T, Calvo N, Yue J, et al. 2013. Influence of El Ni?o-Southern Oscillation in the mesosphere. Geophys Res Lett, 40: 3292-3296
[157]  Lindzen R S. 1981. Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res, 86: 9707-9714
[158]  Liu H L, Hagan M E. 1998. Local heating/cooling of the mesosphere due to gravity wave and tidal coupling. Geophys Res Lett, 25: 2941-2944
[159]  Liu H X, Lühr H, Watanabe S. 2007. Climatology of the equatorial thermospheric mass density anomaly. J Geophys Res, 112: A05305
[160]  Liu J, Liu L B, Zhao B Q, et al. 2011. On the relationship between the post midnight thermospheric equatorial mass anomaly and equatorial ionization anomaly under geomagnetic quiet conditions. J Geophys Res, 116: A12312
[161]  Liu L B, He M S, Wan W X, et al. 2008. Topside ionospheric scale heights retrieved from Constellation Observing System for meteorology, ionosphere, and climate radio occultation measurements. J Geophys Res, 113: A10304
[162]  Liu L B, Zhao B Q, Wan W X, et al. 2009. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for meteorology, ionosphere, and climate mission radio occultation measurements. J Geophys Res, 114: A02302
[163]  Liu L B, Wan W X, Ning B Q, et al. 2010a. Longitudinal behaviors of the IRI-B parameters of the equatorial electron density profiles retrieved from FORMOSAT-3/COSMIC radio occultation measurements. Adv Space Res, 46: 1064-1069
[164]  Liu L B, He M S, Yue X A, et al. 2010b. Ionosphere around equinoxes during low solar activity. J Geophys Res, 115: A09307
[165]  Liu X, Xu J Y, Liu H L, et al. 2008. Nonlinear interactions between gravity waves with different wavelengths and diurnal tide. J Geophys Res, 113: D08112
[166]  Liu X, Xu J Y, Gao H, et al. 2009. Kelvin-Helmholtz billows and their effects on mean state duringgravity wave propagation. Ann Geophys, 27: 2789-2798
[167]  Liu X, Zhou Q H, Yuan W, et al. 2012. Influences of non-isothermal atmospheric backgrounds on variations of gravity wave parameters. Sci China Tech Sci, 55: 1251-1257
[168]  Niu X J, Xiong J G, Wan W X, et al. 2005. Lunar tidal winds in the mesosphere over wuhan and adelaide. Adv Space Res, 36: 2218-2222
[169]  Pancheva D V, Fejer B G, Garcia R R, et al. 2006. Vertical coupling in the atmosphere/ionosphere system. J Atmos Sol-Terr Phy, 68: 245-598
[170]  Pancheva D V, Haldoupis C, Marsh D R, et al. 2007. Vertical coupling in the atmosphere/ionosphere system. J Atmos Sol-Terr Phy, 69: 2081-2522
[171]  Pancheva D, Shiokawa K, Knizova P, et al. 2012. Recent progress in the vertical coupling in the atmosphere-ionosphere system. J Atmos Sol-Terr Phy, 90-91: 1-222
[172]  Peterson A W, Kieffaber L M. 1973. Infrared photography of OH airglow structures. Nature, 242: 321-322
[173]  Peterson A W, 1979. Airglow events visible to the naked eye. Applied Optics, 18: 3390-3393
[174]  Plane J M C. 2004. A new time-resolved model of the mesospheric Na layer: Constraints on the meteor input function. Atmos Chem Phys Discuss, 4: 39-69
[175]  Reigber C, Lühr H, Schwintzer P. 2002. CHAMP mission status, Adv Space Res, 30: 129-134, doi: 10.1016/S0273-1177(02)00276-4
[176]  Ren Z P, Wan W X, Liu L B, et al. 2009a. Intra-annual variation of wave number 4 structure of vertical E×B drifts in the equatorial ionosphere seen from Rocsat-1. J Geophys Res, 114: A05308
[177]  She C Y, Yu J R, Latifi H, et al. 1992. High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements. Appl Optics, 31: 2095-2106
[178]  Song Q, Ding F, Wan W X, et al. 2012. Global propagation features of large-scale traveling ionospheric disturbances during the magnetic storm of 7-10 November 2004. Ann Geophys, 30: 683-694
[179]  Song Q, Ding F, Wan W X, et al. 2013. Statistical study of large-scale traveling ionospheric disturbances generated by the solar terminator over China. J Geophys Res-Space Physics, 118: 4583-4593
[180]  Sutton E K, Nerem R S, Forbes J M. 2007. Density and winds in the thermosphere deduced from accelerometer data. J Spacecraft Rockets, 44: 1210-1219
[181]  Tang Y H, Dou X K, Li T, et al. 2014. Gravity wave characteristics in the mesopause region revealed from OH airglow imager observations over Northern Colorado. J Geophys Res-Space Physics, 119: 630-645, doi: 10.1002/2013JA018955
[182]  Taylor M J. 1997. A review of advances in imaging techniques for measuring short period gravity waves in the mesosphere and lower thermosphere. Adv Space Res, 19: 667-676
[183]  Wan W X, Liu L B, Pi X Q, et al. 2008. Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys Res Lett, 35: L12104
[184]  Wan W X, Xiong J, Ren Z P, et al. 2010. Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide. J Geophys Res, 115: A11303
[185]  Wan W X, Ren Z P, Ding F. et al. 2012. A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere. J Atmos Sol-Terr Phy, 90-91: 52-60
[186]  Wang J H, Yang Y, Cheng X W, et al. 2012. Double sodium layers observation over Beijing, China. Geophys Res Lett, 39: L15801
[187]  Wu Q, Gablehouse D, Solomon S C, et al. 2004. A new Fabry-Perot interferometer for upper atmospheric research. Proc SPIE, 5660: 218-227
[188]  Wu Y F, Xu J Y. 2006. Comparison of horizontal velocity spectra derived from chaff rockets with saturation models. J Geophys Res, 111: D13109
[189]  Xia H Y, Dou X K, Sun D S, et al. 2012. Mid-altitude wind measurements with mobile rayleigh doppler lidar incorporating system-level optical frequency control method. Opt Express, 20: 15286-15300

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133