Bartholomé E, Belward A. 2005. GLC2000: A new approach to global land cover mapping from Earth observation data. Int J Remote Sens, 26: 1959-1977
[5]
Bergstrom S. 1995. The HBV model. In: Singh V P, ed. Computer Models of Watershedhydrology. Littleton: Water Resources Publications. 443-476
[6]
Beven K, Kirkby M. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci J, 24: 43-69
[7]
Bohn T J, Lettenmaier D P, Sathulur K, et al. 2007. Methane emissions from western Siberian wetlands: Heterogeneity and sensitivity to climate change. Environ Res Lett, 2: 045015
[8]
Decharme B, Douville H. 2006. Introduction of a sub-grid hydrology in the ISBA land surface model. Clim Dyn, 26: 65-78
[9]
Decharme B, Douville H. 2007. Global validation of the ISBA sub-grid hydrology. Clim Dyn, 29: 21-37
[10]
Hui F, Xu B, Huang H, et al. 2008. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. Int J Remote Sens, 29: 5767-5784
[11]
Ji W, Zeng N, Wang Y, et al. 2007. Analysis on the waterbirds community survey of Poyang Lake in winter. Geogr Inf Sci, 13: 51-64
[12]
LehnerB,D?ll P. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol, 296: 1-22
[13]
Loveland T, Reed B, Brown J, et al. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens, 21: 1303-1330
[14]
Melton J R, Wania R, Hodson E L, et al. 2013. Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 10: 753-788
[15]
Pokhrel Y, Hanasaki N, Koirala S, et al. 2012. Incorporating anthropogenic water regulation modules into a land surface model. J Hydrometeorol, 13: 255-269
[16]
Prentice I C, Sykes M T, Cramer W. 1993. A Simulation-Model for the transient effects of climate change on forest landscapes. Ecol Model, 65: 51-70
[17]
Ringeval B, Decharme B, Piao S L, et al. 2012. Modelling sub-grid wetland in the ORCHIDEE global land surface model: Evaluation against river discharges and remotely sensed data. Geosci Model Dev, 5: 683-735
[18]
Rodell M, Houser P, Jambor U, et al. 2004. The global land data assimilation system. Bull Amer Meteorol Soc, 85: 381-394
[19]
Rodell M, Chen J, Kato H, et al. 2007. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J, 15: 159-166
[20]
Syed T H, Famiglietti J S, Rodell M, et al. 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res, 44: W02433, doi: 10.1029/2006WR005779
[21]
Tateishi R, Uriyangqai B, Al-Bilbisi H, et al. 2011. Production of global land cover data-GLCNMO. Int J Digit Earth, 4: 22-49
[22]
Wilen B, Bates M. 1995. The US fish and wildlife service''s national wetlands inventory project. Vegetatio, 118: 153-169
[23]
Wood E F, Roundy J K, Troy T J, et al. 2011. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth''s terrestrial water. Water Resour Res, 47: W05301, doi: 10.1029/2010WR010090
[24]
Zedler J B, Kercher S. 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annu Rev Environ Resour, 30: 39-74
[25]
Zhang J, Wang W C, Wei J. 2008. Assessing land-atmosphere coupling using soil moisture from the global land data assimilation system and observational precipitation. J Geophys Res, 113: D17119, doi: 10.1029/2008JD009807
Dronova I, Gong P, Wang L. 2011. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens Environ, 115: 3220-3236
[30]
Ek M, Mitchell K, Lin Y, et al. 2003. Implementation of the upgraded Noah land-surface model in the NCEP operational mesoscale Eta model. J Geophys Res, 108, doi: 10.1029/2002JD003296
[31]
Melton J R, Wania R, Hodson E L, et al. 2013. Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 10: 753-788
[32]
Fan Y, Miguez-Macho G. 2011. A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim Dyn, 37: 253-278
[33]
Fan Y, Li H, Miguez-Macho G. 2013. Global patterns of groundwater table depth. Science, 339: 940-943
[34]
Friedl M, McIver D, Hodges J, et al. 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens Environ, 83: 287-302
[35]
Gong P, Wang J, Yu L, et al. 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int J Remote Sens, 34: 2607-2654
[36]
Habets F, Saulnier G M. 2001. Subgrid runoff parameterization. Phys Chem Earth Pt B, 26: 455-459
[37]
Hargreaves G H, Samani Z A. 1985. Reference crop evapotranspiration from ambient air temperature. Appl Eng Agric, 1: 96-99
[38]
Hilbert D W, Roulet N, Moore T. 2000. Modelling and analysis of peatlandsas dynamical systems. J Ecol, 88: 230-242
[39]
Nakaegawa T. 2012. Comparison of water-related land cover types in six 1-km global land cover datasets. J Hydrometeorol, 13: 649-664
[40]
OECD. 1996. Guidelines for aid agencies for improved conservation and sustainable use of tropical and subtropical wetlands. In: Organization for Economic Co-operation and Development, Paris