全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球陆表湿地潜在分布区制图及遥感验证

, PP. 1610-1620

Keywords: 全球陆表湿地,潜在分布区,水平衡模型,CTI,精度评价

Full-Text   Cite this paper   Add to My Lib

Abstract:

?由于城市化和农业垦殖等人类活动不断增强,很多湿地生态系统受到侵占或干扰.保护湿地资源需要准确的湿地分布.然而由于湿地类型复杂多样,地面调查困难,大范围湿地分布制图很难完成.目前还没有专门用于湿地保护和规划且有较高分辨率的全球湿地分布数据.采用水文、气候数据结合1km分辨率的混合地形指数(CTI)数据,利用陆表湿地和地下水位的关系,模拟出不考虑人类活动影响状况下30s分辨率的全球陆表湿地潜在分布区.这是最高分辨率的全球陆表湿地的潜在分布数据.模拟结果显示全球陆表湿地潜在分布区面积达到3.316×107km2.用遥感获得的实际湿地数据对陆表湿地模拟结果进行精度验证,总体精度达到83.7%.本次模拟结果可以作为构建全球湿地实际分布数据库的基础.由于模拟过程未考虑农业灌溉、建坝等人类活动对湿地的干扰破坏,因此本文对陆表湿地潜在分布区的模拟结果大于当前几种全球土地覆盖制图产品中湿地的面积.本文采用方法所需数据相对较少,精度高于其他产品.

References

[1]  宫鹏, 牛振国, 程晓, 等. 2010. 中国1990和2000基准年湿地变化遥感. 中国科学: 地球科学, 40: 768-775
[2]  俞乐, 王杰, 李雪草, 等. 2014. 基于多源数据集成的多分辨率全球地表覆盖制图. 中国科学: 地球科学, 44: 1646-1660
[3]  郑姚闽, 张海英, 牛振国, 等. 2012. 中国国家级湿地自然保护区保护成效初步评估. 科学通报, 57: 207-230
[4]  Bartholomé E, Belward A. 2005. GLC2000: A new approach to global land cover mapping from Earth observation data. Int J Remote Sens, 26: 1959-1977
[5]  Bergstrom S. 1995. The HBV model. In: Singh V P, ed. Computer Models of Watershedhydrology. Littleton: Water Resources Publications. 443-476
[6]  Beven K, Kirkby M. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci J, 24: 43-69
[7]  Bohn T J, Lettenmaier D P, Sathulur K, et al. 2007. Methane emissions from western Siberian wetlands: Heterogeneity and sensitivity to climate change. Environ Res Lett, 2: 045015
[8]  Decharme B, Douville H. 2006. Introduction of a sub-grid hydrology in the ISBA land surface model. Clim Dyn, 26: 65-78
[9]  Decharme B, Douville H. 2007. Global validation of the ISBA sub-grid hydrology. Clim Dyn, 29: 21-37
[10]  Hui F, Xu B, Huang H, et al. 2008. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. Int J Remote Sens, 29: 5767-5784
[11]  Ji W, Zeng N, Wang Y, et al. 2007. Analysis on the waterbirds community survey of Poyang Lake in winter. Geogr Inf Sci, 13: 51-64
[12]  LehnerB,D?ll P. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol, 296: 1-22
[13]  Loveland T, Reed B, Brown J, et al. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens, 21: 1303-1330
[14]  Melton J R, Wania R, Hodson E L, et al. 2013. Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 10: 753-788
[15]  Pokhrel Y, Hanasaki N, Koirala S, et al. 2012. Incorporating anthropogenic water regulation modules into a land surface model. J Hydrometeorol, 13: 255-269
[16]  Prentice I C, Sykes M T, Cramer W. 1993. A Simulation-Model for the transient effects of climate change on forest landscapes. Ecol Model, 65: 51-70
[17]  Ringeval B, Decharme B, Piao S L, et al. 2012. Modelling sub-grid wetland in the ORCHIDEE global land surface model: Evaluation against river discharges and remotely sensed data. Geosci Model Dev, 5: 683-735
[18]  Rodell M, Houser P, Jambor U, et al. 2004. The global land data assimilation system. Bull Amer Meteorol Soc, 85: 381-394
[19]  Rodell M, Chen J, Kato H, et al. 2007. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J, 15: 159-166
[20]  Syed T H, Famiglietti J S, Rodell M, et al. 2008. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res, 44: W02433, doi: 10.1029/2006WR005779
[21]  Tateishi R, Uriyangqai B, Al-Bilbisi H, et al. 2011. Production of global land cover data-GLCNMO. Int J Digit Earth, 4: 22-49
[22]  Wilen B, Bates M. 1995. The US fish and wildlife service''s national wetlands inventory project. Vegetatio, 118: 153-169
[23]  Wood E F, Roundy J K, Troy T J, et al. 2011. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth''s terrestrial water. Water Resour Res, 47: W05301, doi: 10.1029/2010WR010090
[24]  Zedler J B, Kercher S. 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annu Rev Environ Resour, 30: 39-74
[25]  Zhang J, Wang W C, Wei J. 2008. Assessing land-atmosphere coupling using soil moisture from the global land data assimilation system and observational precipitation. J Geophys Res, 113: D17119, doi: 10.1029/2008JD009807
[26]  牛振国, 宫鹏, 程晓, 等. 2009. 中国湿地初步遥感制图及相关地理特征分析. 中国科学D辑: 地球科学, 39: 188-203
[27]  牛振国, 张海英, 王显威, 等. 2012. 1978~2008年中国湿地类型变化. 科学通报, 57: 1400-1411
[28]  孙芳蒂, 赵圆圆, 宫鹏, 等. 2014. 动态地表覆盖类型遥感监测: 中国主要湖泊面积2000~2010年间逐旬时间尺度消长. 科学通报, 59: 397-411
[29]  Dronova I, Gong P, Wang L. 2011. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens Environ, 115: 3220-3236
[30]  Ek M, Mitchell K, Lin Y, et al. 2003. Implementation of the upgraded Noah land-surface model in the NCEP operational mesoscale Eta model. J Geophys Res, 108, doi: 10.1029/2002JD003296
[31]  Melton J R, Wania R, Hodson E L, et al. 2013. Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 10: 753-788
[32]  Fan Y, Miguez-Macho G. 2011. A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim Dyn, 37: 253-278
[33]  Fan Y, Li H, Miguez-Macho G. 2013. Global patterns of groundwater table depth. Science, 339: 940-943
[34]  Friedl M, McIver D, Hodges J, et al. 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens Environ, 83: 287-302
[35]  Gong P, Wang J, Yu L, et al. 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int J Remote Sens, 34: 2607-2654
[36]  Habets F, Saulnier G M. 2001. Subgrid runoff parameterization. Phys Chem Earth Pt B, 26: 455-459
[37]  Hargreaves G H, Samani Z A. 1985. Reference crop evapotranspiration from ambient air temperature. Appl Eng Agric, 1: 96-99
[38]  Hilbert D W, Roulet N, Moore T. 2000. Modelling and analysis of peatlandsas dynamical systems. J Ecol, 88: 230-242
[39]  Nakaegawa T. 2012. Comparison of water-related land cover types in six 1-km global land cover datasets. J Hydrometeorol, 13: 649-664
[40]  OECD. 1996. Guidelines for aid agencies for improved conservation and sustainable use of tropical and subtropical wetlands. In: Organization for Economic Co-operation and Development, Paris

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133