全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

深水峡谷体系控制因素分析—以南海北部琼东南盆地中央峡谷体系为例

, PP. 1807-1820

Keywords: 深水峡谷体系,相对海平面变化,沉积物供给,构造活动,琼东南盆地

Full-Text   Cite this paper   Add to My Lib

Abstract:

?利用2D/3D地震数据及钻井资料,详细解剖了晚中新世以来构造-沉积背景对琼东南盆地大型轴向峡谷体系形成和演化的控制.晚中新世以来的大规模海平面下降导致了陆坡区的沉积物易发生失稳,从而为中央峡谷体系沉积充填提供了物源.峡谷内部的2套沉积物:浊流沉积体和块体搬运复合体,分别来自西北部物源和北部物源,不同部位沉积物供给能力的差异,导致峡谷内部表现出不同的充填结构和样式.11.6Ma时期构造变革事件为峡谷的形成提供了构造背景,盆地东部形成的轴向“限制型”小型盆地可视为中央峡谷体系的雏形.5.7Ma时期红河断裂带右旋走滑的活动,将增强莺-琼盆地交界处沉积物的水动力条件,并向浊流发生演变,形成深水浊积水道.南部隆起的存在对峡谷内部充填沉积物起到了“遮挡”的作用.更新世以来的气候因素所引起的强烈沉积物供给和盆地东部特殊的地貌特征,引起了中央峡谷体系的“回春”,大量垮塌沉积体的发育将进一步加剧峡谷的“负地形”特征.研究表明,琼东南盆地中央峡谷体系自西向东不同区段的主控因素存在差异:西北部物源的供给和红河断裂带在5.7Ma时期的构造活动控制了头部区域浊积水道的形成和发育;西北部物源、北部陆坡的沉积物供给、构造地貌特征等,控制了峡谷自西向东的运动,并影响了峡谷内部的充填结构;盆地东部11.6Ma时期的构造变革和长昌凹陷有限的沉积物供给能力是盆地东段中央峡谷体系的主控因素.

References

[1]  苏明, 解习农, 姜涛,等. 2011. 琼东南盆地裂后期S40 界面特征及其地质意义. 地球科学: 中国地质大学学报, 36: 886-894
[2]  王大伟, 吴时国, 吕福亮, 等. 2011. 南海深水块体搬运沉积体系及其油气勘探意义. 中国石油大学学报(自然科学版), 35: 14-19
[3]  王海荣, 王英民, 邱燕, 等. 2008. 南海北部陆坡的地貌形态及其控制因素. 海洋学报, 30: 70-79
[4]  王英民, 徐强, 李冬, 等. 2011. 南海西北部晚中新世的红河海底扇. 科学通报, 56: 781-787
[5]  王振峰, 李绪深, 孙志鹏, 等. 2011. 琼东南盆地深水区油气成藏条件和勘探潜力. 中国海上油气, 23: 7-13
[6]  王振峰. 2012. 深水重要油气储层—琼东南盆地中央峡谷体系. 沉积学报, 34: 646-653
[7]  吴时国, 坂本泉. 2001. 菲律宾海钱洲深海峡谷沉积作用与发育演化. 科学通报, 46(增刊): 84-88
[8]  解习农, 陈志宏, 孙志鹏, 等. 2012. 南海西北陆缘深水沉积体系内部构成特征. 地球科学: 中国地质大学学报, 37: 627-634
[9]  许怀智 ,蔡东升, 孙志鹏, 等. 2012. 琼东南盆地中央峡谷沉积充填特征及油气地质意义. 地质学报, 86: 641-650
[10]  袁圣强. 2009. 南海北部陆坡区深水水道沉积体系研究. 博士学位论文. 青岛: 中国科学院海洋研究所. 1-121
[11]  赵泉鸿, 汪品先, 成鑫荣, 等. 2001. 中新世“碳位移”事件在南海的记录. 中国科学D 辑: 地球科学, 31: 808-815
[12]  朱伟林, 钟锴, 李友川, 等. 2012. 南海北部深水区油气成藏与勘探. 科学通报, 57: 1833-1841
[13]  朱伟林, 张功成, 杨少坤, 等. 2007. 南海北部大陆边缘盆地天然气地质. 北京: 石油工业出版社. 391
[14]  Allen C R, Gillespie A R, Han Y, et al. 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates and seismic hazard. Geol Soc Am Bull, 95: 686-700
[15]  Alves T M, Cartwright J, Davies R J. 2009. Faulting of salt-withdrawal basins during early halokinesis: Effects on the Paleogene Rio Doce
[16]  Canyon system (Espírito Santo Basin, Brazil). AAPG Bull, 93: 617-652
[17]  Antobreh A A, Krastel S. 2006. Morphology seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: A newly discovered canyon preserved-off a major arid climatic region. Mar Pet Geol, 23: 37-59
[18]  Babonneau N, Savoye B, Cremer M, et al. 2002. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan.Mar Pet Geol, 19: 445-467
[19]  Clark J D, Pickering K T. 1996. Architectural elements and growth pattern of submarine channels: Application to hydrocarbon exploration. AAPG Bull, 80: 194-221
[20]  Farre J A, MecGregor B A, Ryan W B F, et al. 1983. Breaching the shelf break: passage from youthful to mature phase in submarine canyon evolution. In: Stanley D J, Moore T G, eds. The Shelf Break: Critical Interface on Continental Margins. Tulsa: Society for Sedimentary Geology. 25-39
[21]  Gingele F X, Deckker P D, Hillenbrand C D. 2004. Late Quaternary terrigenous sediments from the Murray Canyons area, offshore South Australia and their implications for sea level change, palaeoclimate and palaeodrainage of the Murray-Darling Basin. Mar Geol, 212: 183-197
[22]  Gong C L, Wang Y M, Zhu W L, et al. 2011. The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Mar Pet Geol, 28: 1690-1702
[23]  Haq B U, Hardenbol J, Vail P R. 1987. Chronology of fluctuating sea-levels since the Triassic. Science, 235: 1156-1167
[24]  Rangin C, Klein M, Roques D, et al. 1995. The Red River Fault system in the Tonkin Gulf, Vietnam. Tectonophysics, 243: 209-222
[25]  Ridente D, Foglini F, Minisini D, et al. 2007. Shelf-edge erosion, sediment failure and inception of Bari Canyon on the Southwestern Adriatic Margin (Central Mediterranean). Mar Geol, 246: 193-207
[26]  Shepard F P. 1981. Submarine canyons: Multiple causes and long-time persistence. AAPG Bull, 65: 1062-1077
[27]  Su M, Xie X N, Xie Y H, et al. 2014. The segmentations and the significances of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea. J Asian Earth Sci, 79: 552-563
[28]  Sun Q L, Wu S G, Lüdmann T, et al. 2011. Geophysical evidence for cyclic sediment deposition on the southern slope of Qiongdongnan Basin,
[29]  South China Sea. Mar Geophys Res, 32: 415-428
[30]  Twichell D C, Roberts D G. 1982. Morphology, distribution, and development of submarine canyons on the United States Atlantic continental slope between Husdon and Baltimore Canyons. Geology, 10: 408-412
[31]  Wonham J P, Jayr S, Mougamba R, et al. 2000. 3D sedimentary evolution of a canyon fill (Lower Miocene-age) from the Mandorove Formation, offshore Gabon. Mar Pet Geol, 17: 175-197
[32]  Xie X N, Müller R D, Li S T, et al. 2006. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Mar Pet Geol, 23: 745-765
[33]  Xie X N, Müller R D, Ren J Y, et al. 2008. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea. Mar Geol, 247: 129-144
[34]  龚再升, 李思田, 谢泰俊, 等. 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社. 534
[35]  何云龙, 解习农, 李俊良, 等. 2010. 琼东南盆地陆坡体系发育特征及其控制因素. 地质科技情报, 29: 118-122
[36]  何云龙, 解习农, 陆永潮, 等. 2011. 琼东南盆地深水块体流构成及其沉积特征. 地球科学: 中国地质大学学报, 36: 905-913
[37]  李冬, 王英民, 王永凤, 等. 2011a. 琼东南盆地中央峡谷深水天然堤-溢岸沉积. 沉积学报, 29: 689-694
[38]  李冬, 王英民, 王永凤, 等. 2011b. 块状搬运复合体的识别及其油气勘探意义—以琼东南盆地中央峡谷区为例. 沉积与特提斯地质, 31:58-63
[39]  林畅松, 刘景彦, 蔡世祥, 等. 2001. 莺-琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46: 69-72
[40]  刘宝明, 夏斌, 李绪宣, 等. 2006. 红河断裂带东南的延伸及其构造演化意义. 中国科学D 辑: 地球科学, 36: 914-924
[41]  邵磊, 李献华, 汪品先, 等. 2004. 南海渐新世以来构造演化的沉积记录: ODP1148 站深海沉积物中的证据. 地球科学进展, 19: 539-544
[42]  苏明, 李俊良, 姜涛, 等. 2009. 琼东南盆地中央峡谷的形态及成因. 海洋地质与第四纪地质, 29: 85-93
[43]  Harris P T, Whiteway T. 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar Geol, 285: 69-86
[44]  Laursen J, Normark W R. 2002. Late Quaternary evolution of the San Antonio submarine canyon in the central Chile forearc (~33°S). Mar Geol, 188: 365-390
[45]  Mayall M, Jones E, Casey M. 2006. Turbidite channel reservoirs: Key elements in facies prediction and effective development. Mar Pet Geol, 23: 821-841
[46]  McHugh C M G, Damuth J E, Mountain G S. 2002. Cenozoic mass transport facies and their correlation with relative sea level change, NewJersey continental margin. Mar Geol, 184: 295-334
[47]  Orange D L, Breen N A. 1992. The effects of fluid escape on accretionary wedges 2: Seepage force, slope failure, headless submarine canyons, and vents. J Geophys Res, 97: 9277-9295
[48]  Piper D J W, Normark W R. 2009. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective. J Sediment Res, 79: 347-362
[49]  Pisias N G, Moore T C Jr. 1981. The evolution of Pleistocene climate: A time series approach. Earth Planet Sci Lett, 52: 450-458
[50]  Popescua I, Lericolais G, Paninc N, et al. 2004. The Danube submarine canyon (Black Sea): Morphology and sedimentary processes. Mar Geol, 206: 249-265

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133