全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

藏东雀儿山复式花岗岩体成因及构造背景:年代学、地球化学与锆石Lu-Hf同位素制约

, PP. 1791-1806

Keywords: A型花岗岩,地球化学,岩石学成因,雀儿山,义敦岛弧,藏东

Full-Text   Cite this paper   Add to My Lib

Abstract:

?雀儿山复式花岗岩体位于藏东义敦岛弧北段,主体为粗粒似斑状黑云母钾长-二长花岗岩,岩体东侧与南西侧发育小面积的细粒含斑黑云母二长花岗岩与含条纹长石斑晶花岗闪长岩.本文对雀儿山复式花岗岩体进行了主微量元素,锆石U-Pb年龄与Hf同位素研究.结果显示粗粒似斑状黑云母钾长-二长花岗岩,细粒含斑黑云母二长花岗岩高SiO2(73.5%~77.7%),高碱(全碱6.9%~8.5%),高Ga/Al比值(2.6~3.4),低Al2O3(11.8%~14.5%),低CaO(0.25%~1.5%),低MgO(0.18%~0.69%),亏损Ba,Sr和Eu,具较高形成温度等均表现出A型花岗岩的特征.两者野外接触关系以及锆石U-Pb年龄分别为(105.9±1.3)和(102.6±1.1)Ma,均表明粗粒似斑状黑云母钾长-二长花岗岩形成略早,为两期A型岩浆活动.含条纹长石斑晶花岗闪长岩则相对低SiO2、低碱、高Al2O3、高CaO和高MgO,矿物组合等均表现出I型花岗岩的特征,与早期A型花岗岩的包裹关系显示I型花岗质岩浆活动可能要早于A型花岗质岩浆活动.因此,雀儿山花岗岩体为三期岩浆事件形成的复式花岗岩体.早期A型花岗岩与晚期A型花岗岩176Hf/177Hf比值分别变化在0.282692~0.282749和0.282685~0.282765,εHf(t)值变化在-0.56~1.43和-0.87~1.90,TDM2变化在1.04~1.22和1.07~1.2Ga,显示两者源区具有相似性.均一的Hf同位素组成,结合野外未见到岩浆混合的标志-暗色微粒包体,表明源区没有或很少的地幔物质加入,其源岩可能为分布于扬子西北缘的康定杂岩,义敦岛弧下可能具有亲扬子的元古宙结晶基底.雀儿山A型花岗岩的形成可能为班公湖-怒江特提斯洋闭合在义敦岛弧区的响应.

References

[1]  闫全人, 王宗起, 刘树文, 等. 2006. 青藏高原东缘构造演化的SHRIMP锆石U-Pb年代学框架. 地质学报, 80: 1285-1295
[2]  张能德. 1994. 川西白玉-稻城地区花岗岩类的年龄. 四川地质学报, 14: 88-99
[3]  Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett, 148: 243-258
[4]  Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97: 1-29
[5]  Chung S L, Liu D, Ji J, et al. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31: 1021-1024
[6]  Collins W J, Beams S D, White A J R, et al. 1982. Nature and origin A-type granites with particular reference to Southeastern Australia. Contrib Mineral Petrol, 80: 189-200
[7]  Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20: 641-644
[8]  Frost C D, Frost B R. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. J Petrol, 52: 39-53
[9]  Griffin W L, Pearson N J, Belousova E, et al. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta, 64: 133-147
[10]  Hou Z Q, Gao Y F, Qu X M, et al. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett, 220: 139-155
[11]  Hu Z C, Gao S, Liu Y S, et al. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J Anal At Spectrom, 23: 1093-1101
[12]  Hu Z C, Liu Y S, Gao S, et al. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J Anal At Spectrom, 27: 1391-1399
[13]  King P L, White A J R, Chappell B W, et al. 1997. Characterization and origin of aluminous A-type granites from the Lachalan Fold Belt, Southerstern Australia. J Petrol, 38: 371-391
[14]  Le Maitre R W, Bateman P, Dudek A, et al. 1989. A Classification of Igenous Rocks and Glossary of Terms. Oxford: Blackwell. 1-253
[15]  Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34-43
[16]  Liu Y S, Hu Z C, Zong K Q, et al. 2010a. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull, 55: 1535-1546
[17]  Liu Y S, Gao S, Hu Z C, et al. 2010b. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol, 51: 537-571
[18]  Losielle M C, Wones D R. 1979. Characterisitics and origin of anorogenic granites. Geol Soc Am Abstr Prog, 11: 468
[19]  Zhu D C, Mo X X, Niu Y L, et al. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chem Geol, 268: 298-312Zhu D C, Zhao Z D, Niu Y L, et al. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett, 301: 241-255
[20]  侯增谦, 曲晓明, 周继荣, 等. 2001. 三江地区义敦岛弧碰撞造山过程: 花岗岩记录. 地质学报, 75: 484-497
[21]  侯增谦, 杨岳清, 王海平, 等. 2003. 三江义敦岛弧碰撞造山过程与成矿系统. 北京: 地质出版社. 1-345
[22]  侯增谦, 杨岳清, 曲晓明, 等. 2004. 三江地区义敦岛弧造山带演化和成矿系统. 地质学报, 78: 109-120
[23]  纪伟强, 吴福元, 锺孙霖, 等. 2009. 西藏南部冈底斯岩基花岗岩时代与岩石成因. 中国科学D辑: 地球科学, 39: 849-871
[24]  刘树文, 王宗起, 闫全人, 等. 2006. 川西雀儿山花岗岩的地球化学和岩石成因. 地质学报, 80: 1355-1363
[25]  曲晓明, 辛洪波, 杜德道, 等. 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41: 1-14
[26]  王全伟, 王康明, 阚泽忠, 等. 2008. 川西地区花岗岩及成矿系列. 北京: 地质出版社. 1-305
[27]  吴福元, 李献华, 杨进辉, 等. 2007a. 花岗岩成因研究的若干问题. 岩石学报, 23: 1217-1238
[28]  吴福元, 李献华, 郑永飞, 等. 2007b. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23: 185-220
[29]  肖庆辉, 邓晋福, 马大铨, 等. 2002. 花岗岩研究思维与方法. 北京: 地质出版社. 172-191
[30]  闫全人, 王宗起, 刘树文, 等. 2005. 西南三江特提斯洋扩张与晚古生代东冈瓦纳裂解: 来自甘孜蛇绿岩辉长岩的SHRIMP年代学证据. 科学通报, 50: 158-166
[31]  Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geol Soc Am Bull, 101: 635-643
[32]  Miller C F. 1985. Are Strongly peraluminous magmas derived from pelitic sedimentary sources? J Geol, 93: 673-689
[33]  Miller C F, Mcdowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31: 529-532
[34]  Qu X M, Hou Z Q, Zhou S G. 2002. Geochemical and Nd, Sr isotopic study of the post-orogenic granites in the Yidun arc belt of northern Sanjiang region, southwestern China. Resour Geol, 52: 163-172
[35]  Reid A J, Fowler A P, Phillips D, et al. 2005a. Thermochronology of the Yidun Arc, central eastern Tibetan Plateau: Constraints from 40Ar/39Ar K-feldspar and apatite fission track data. J Asian Earth Sci, 25: 915-935
[36]  Reid A J, Wilson C J L, Phillips D, et al. 2005b. Mesozoic cooling across the Yidun Arc, central-eastern Tibetan Plateau: A reconnaissance Ar40/Ar39 study. Tectonophysics, 398: 45-66
[37]  Reid A J, Wilson C J L, Liu S. 2005c. Structural evidence for the Permo-Triassic tectonic evolution of the Yidun Arc, eastern Tibetan plateau. J Struct Geol, 27: 119-137
[38]  Reid A J, Wilson C J L, Shun L, et al. 2007. Mesozoic plutons of the Yidun Arc, SW China: U/Pb geochronology and Hf isotopic signature. Ore Geol Rev, 31: 88-106
[39]  Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc London Spec Publ, 42: 313-345
[40]  Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett, 64: 295-304
[41]  Weislogel A L. 2008. Tectonostratigraphic and geochronologic constraints on evolution of the northeast Paleotethys from the Songpan-Ganzi Complex, central China. Tectonophysics, 451: 331-345
[42]  Whalen J B, Currie K L, Chappell B W. 1987. A-type Granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 95: 407-419
[43]  Xu J F, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30: 1111-1114
[44]  Zhao X F, Zhou M F, Li J W, et al. 2008. Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chem Geol, 257: 1-15

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133