全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青海湖裸鲤(湟鱼)鱼骨产出层位及其耳石微化学对明朝青海湖水位的指示

, PP. 1833-1843

Keywords: 青海湖裸鲤,鱼骨,微耳石,氧同位素,Mg/Ca,湖泊水位

Full-Text   Cite this paper   Add to My Lib

Abstract:

?鱼耳石是硬骨鱼类内耳中的生物碳酸盐矿物,其组成可以记录鱼体生活水体的物理和化学状况.以青海湖鸟岛附近发现的青海湖裸鲤鱼骨及耳石为研究对象,通过古代和现代耳石微化学组成的对比分析,结合裸鲤鱼骨及耳石AMS-14C定年、产出层位和周边地形,认为这些裸鲤是小冰期时青海湖高湖面退却形成的残余湖内生长的.通过保存的青海湖裸鲤鱼骨和耳石的AMS-14C定年,确定这些裸鲤生活的时代距今300~680年左右,即我国历史上的明朝时期.X射线衍射图谱表明,青海湖裸鲤古代微耳石的矿物是纯文石,这与现代微耳石一致,说明埋藏后微耳石的矿物类型没有发生变化,可用于对比分析.微化学分析结果表明,古代微耳石的Mg/Ca比值((70.12±18.50)×10-5)和δ18O值(1.76‰±1.03‰)均明显高于现代微耳石(Mg/Ca平均值为(3.11±0.41)×10-5,δ18O平均值为-4.82‰±0.96‰).这反映了明朝时青海湖裸鲤生活的水体具有比现代青海湖高得多的Mg/Ca和δ18O值,这是与大湖隔离后强烈蒸发浓缩的结果,类似于现代的尕海等.根据裸鲤鱼骨产出的层位和海拔高度,推断明朝时期青海湖的湖面海拔至少达到3202m,经计算当时的湖面面积至少为4480km2,比现在大5%左右.

References

[1]  Elsdon T S, Gillanders B M. 2003. Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Rev Fish Biol Fisher, 13: 219-235
[2]  Gago-Duport L, Briones M J I, Rodríguez J B, et al. 2008. Amorphous calcium carbonate biomineralization in the earthworm''s calciferous gland: Pathways to the formation of crystalline phases. J Struct Biol, 162: 422-435
[3]  Gillanders B M, Munro A R. 2012. Hypersaline waters pose new challenges for reconstructing environmental histories of fish based on otolith chemistry. Limnol Oceanogr, 57: 1136-1148
[4]  Griffiths H I, Holmes J A. 2000. Non-marine Ostracods and Quaternary Palaeoenvironments. London: Quaternary Research Association. 1-187
[5]  Henderson A C G, Holmes J A, Zhang J, et al. 2003. A carbon- and oxygen-isotope record of recent environmental change from Qinghai Lake, NE Tibetan Plateau. Chin Sci Bull, 48: 1463-1468
[6]  Hφie H, Otterlei E, Folkvord A. 2004. Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES J Mar Sci, 61: 243-251
[7]  Jamieson J C. 1953. Phase equilibrium in the system calcite-aragonite. J Chem Phys, 21: 1385-1390
[8]  Madsen D B, Ma H Z, Rhode D, et al. 2008. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quat Res, 69: 316-325
[9]  Nolf D. 1985. Otolithi piscium. In: Schultze H P, ed. Handbook of Paleoichthyology. New York: Gustav Fischer Verlag. 1-145
[10]  Patterson W P, Smith G R, Lohmann K C. 1993. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. In: Swart P K, et al. eds. Climate Change in Continental Isotopic Records. Washington D C: Geophysical Monograph Series. 191-202
[11]  Reimer P J, Baillie M G L, Bard E, et al. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50000 years cal BP. Radiocarbon, 51: 1111-1150
[12]  Rhode D, Ma H Z, Madsen D B, et al. 2010. Paleoenvironmental and archaeological investigation at Qinghai Lake, western China: Geomorphic and chronometric evidence of lake level history. Quat Int, 218: 29-44
[13]  Watanabe T, Nakamura T, Nara F W, et al. 2009. High-time resolution AMS 14C data sets for Lake Baikal and Lake Hovsgol sediment cores: Changes in radiocarbon age and sedimentation rates during the transition from the last glacial to the Holocene. Quat Int, 205: 12-20
[14]  Yan J P, Hinderer M, Einsele G. 2002. Geochemical evolution of closed-basin lakes, general model and application to Lakes Qinghai and Turkana. Sediment Geol, 148: 105-122
[15]  Yuan S X, Wu X H, Gao S J, et al. 2000. Comparison of different bone pretreatment methods for AMS 14C dating. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater Atoms, 172: 424-427
[16]  Zhang H C, Peng J L, Ma Y Z, et al. 2004. Late Quaternary palaeolake levels in Tengger Desert, NW China. Paleogeogr Paleoclimatol Paleoecol, 211: 45-58
[17]  冯松, 汤懋苍, 周陆生. 2000. 青海湖近600年的水位变化. 湖泊科学, 12: 205-210
[18]  何德奎, 陈毅峰, 陈宜瑜, 等. 2003. 特化等级裂腹鱼类的分子系统发育与青藏高原隆起. 科学通报, 48: 2354-2362
[19]  胡广, 金章东, 张飞. 2008. 利用介形类壳体Sr、Mg重建古环境受自生碳酸盐矿物的限制及机理探讨. 中国科学D辑: 地球科学, 38: 177-186
[20]  刘向军, 赖忠平. 2010. 青海湖晚第四纪湖面变化研究进展. 地球环境学报, 1: 79-89
[21]  王苏民, 李建仁. 1991. 湖泊沉积—研究历史气候的有效手段—以青海湖、岱海为例. 科学通报, 36: 54-56
[22]  王苏民, 施雅风. 1992. 晚第四纪青海湖演化研究析视与讨论. 湖泊科学, 4: 1-9
[23]  伊万娟, 李小雁, 崔步礼, 等. 2010. 青海湖流域气候变化及其对湖水位的影响. 干旱气象, 28: 375-383
[24]  周玲, 金章东, 李福春, 等. 2012. 青海湖裸鲤(湟鱼)耳石的矿物组成及其Sr/Ca对洄游习性的潜在示踪. 中国科学: 地球科学, 42: 1210-1217
[25]  An Z S, Colman S M, Zhou W J, et al. 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Reports, 2, doi: 10.1038/srep00619
[26]  Andrus C F, Crowe D E, Sandweiss D H, et al. 2002. Otolithδ18O record of mid-Holocene sea surface temperatures in Peru. Science, 295: 1508-1511
[27]  Breard S Q, Stringer G L. 1999. Integrated paleoecology and marine vertebrate fauna of the Stone City Formation(Middle Eocene), Brazos River section, Texas. Trans Gulf Coast Assoc Geol Soc, 49: 132-143
[28]  Campana S E. 1999. Chemistry and composition of fish otoliths pathways: Mechanisms and applications. Mar Ecol Prog Ser, 188: 263-297
[29]  Chen F H, Chen J H, Holmes J A, et al. 2010. Moisture changes over the last millennium in the Arid Central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 29: 1055-1068
[30]  Elsdon T S, Gillanders B M. 2004. Fish otolith chemistry influenced by exposure to multiple environmental variables. J Exp Mar Biol Ecol, 313: 269-284
[31]  Jin Z D, You C F, Wang Y, et al. 2010. Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau. Quat Int, 218: 151-156
[32]  Kerr L A, Andrews A H, Frantz B R, et al. 2004. Radiocarbon in otoliths of yelloweye rockfish (Sebastes ruberrimus): A reference time series for the coastal waters of southeast Alaska. Can J Fish Aquat Sci, 61: 443-451
[33]  Kim S-T, O''Neil J R, Hillaire-Marcel C, et al. 2007. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim Cosmochim Acta, 71: 4704-4715
[34]  Li X Y, Xu H Y, Sun Y L, et al. 2007. Lake-level change and water balance analysis at Lake Qinghai, west China during recent decades. Water Resour Manage, 21: 1505-1516
[35]  Lister G S, Kelts K R, Chen K Z, et al. 1991. Lake Qinghai, China: Closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Paleogeogr Paleoclimatol Paleoecol, 84: 141-162
[36]  Liu W G, Li X Z, Zhang L, et al. 2009. Evaluation of oxygen isotopes in carbonate as an indicator of lake evolution in arid areas: The modern Qinghai Lake, Qinghai-Tibet Plateau. Chem Geol, 268: 126-136

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133