Cherkauer K A, Lettenmaier D P. 1999. Hydrologic effects of frozen soils in the upper Mississippi River Basin. J Geophys Res, 104: 19599-19610
[2]
Dai Y J, Zeng X B, Dickinson R E. 2003. The Common land model. Bull Amer Meteor Soc, 84: 1013-1-23
[3]
DeGaetano A T, Cameron M D, Wilks D S. 2001. Physical simulation of maximum seasonal soil freezing depth in the United States using routine weather obervation. J Appl Meteorol, 40: 546-555
[4]
Dickinson R E, Henderson-Sellers A, Kennedy P J. 1993. Biosphere-Atmosphere Transer Scheme (BATS) version as coupled to the NCAR Community Climate Model. NCAR Tech Note
[5]
Flerchinger G N. 2000. The simultaneous heat and water model: Technical documentation. Boise: Technical Report NWRC
[6]
Frauenfeld O W, Zhang T J, Barry R G, et al. 2004. Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res, 109: D05101, doi: 10.1029/2003JD004245
[7]
Flerchinger G N, Saxton K E. 1989. Simultaneous heat and water model of a freezing snow-residue-soil system I, Theory and development. Trans ASABE, 32: 565-571
[8]
Fuchs M, Campbell G S, Papendick R I. 1978. An analysis of sensible and latent heat flow in a partially frozen unsaturated soil. Soil Sci Soc Am J, 42: 379-385
[9]
Hansson K, Simunek J, Mizoguchi M, et al. 2004. Water flow and heat transport in frozen soil numerical solution and freeze-thaw applications. Soil Sci Soc Am J, 3: 693-704
[10]
Harlan R L.1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res, 9: 1314-1323
[11]
Hayashi M, Goeller N, Quinton W L, et al. 2007. A simple heat-conduction method for simulating the frost-table depth in hydrological models. Hydrol Process, 21: 2610-2622
[12]
Jansson P E, Moon D S. 2001. A coupled model of water heat and mass transfer using object orientation to improve flexibility and functionality. Environ Modell Softw, 16: 37-46
[13]
Jason B, Lynch A H, Stuart C F, et al. 2001. The representation of Arctic soils in the land surface model: The importance of mosses. J Clim, 14: 3324-3335
[14]
Li X, Cheng G D, Jin H J, et al. 2008. Cryospheric change in China. Glob Planet Change, 62: 210-218
[15]
Nelson F E, Outcalt S I. 1983. A frost index number for spatial prediction of ground-frost zones. In: Permafrost-Fourth International Conference Proceedings. Washington D C: National Academy Press. 907-911
[16]
Nelson F E, Anisimov O, Shiklomanov N. 2001. Subsidence risk from thawing permafrost. Nature, 410: 889-890
[17]
Niu G Y, Yang Z L. 2006. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol, 7: 937-952
[18]
Oleson K, Lawrence D, Bonan G, et al. 2010. Technical Description of version 4.0 of the Community Land Model. NCAR Tech Note
[19]
Sellers P J, Randall D A, Collatz G J,et al. 1996. A revised land surface parameterization (SIB2) for atmosphere GCMS. Part I: model formulation. J Clim. 9: 676-705
[20]
Stefan J. 1998. Uber die theorie der eisbildung, insbesondere yber die eisbildung im polarmeere sitzungsber akad. Wiss Wien math Naturwiss K1 Abt, 1: 965-83
[21]
Taylor G S ,Luthin J N. 1978. A model for coupled heat and moisture transfer during soil freezing. Can Geotech J, 15: 548-555
[22]
Woo M K, Arain M A, Mollinga M, et al. 2004. A two-directional freeze and thaw algorithm for hydrologic and land surface modeling. Geophys Res Lett, 31: L12501, doi: 10.1029/2004GL019475
[23]
Xie Z H, Song L Y, Feng X B. 2008. A moving boundary problem derived from heat and water transfer processes in frozen and thawed soils and its numerical simulation. Sci China Ser A, 51: 1510-1521
[24]
Xue Y, Zeng F J, Schlosser C A. 1996. SSIB and its sensitivity to soil propertites—A case study using HAPEX-Mobility data. Glob Planet Change, 13:183-194
[25]
Yi S H, Arain M A, Woo M K. 2006. Modifications of a land surface scheme for improved simulation of ground freeze-thaw in northern environments. Geophys Res Lett, 33: L13501, doi: 10.1029/2006GL026340
Kersten M S. 1959. Frost penetration:relationship to air temperature and other factors. Highw Res Board Bull, 225: 45-80
[29]
Li Q, Sun S F, Xue Y K. 2010. Analyses and development of a hierarchy of frozen soil models for cold region study. J Geophys Res, 115: D03107, doi: 10.1029/2009JD012530
[30]
Li X, Koike T. 2003. Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations. Cold Reg Sci Technol, 36: 165-182
[31]
Zhang T, Stanmes K.1998. Impact of climatic factors on the active layer and permafrost at Barrow, Alaska. Permafrost Periglacial Process, 9: 229-246
[32]
Zhang T, Frauenfeld O W, Serreze M C, et al. 2005. Spatial and temporal variabilty in active layer thickness over the Russian Arctic drainage basin. J Geophys Res, 110: D16101, doi: 10.1029/2004JD005642
[33]
Zhang X, Sun S F, Xue Y K. 2007. Development and testing of a frozen soil parameterization for cold region studies. J Hydrmeteorol, 8: 690-701
[34]
Zhang Y S, Carey S K, Quinton W L. 2008. Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions. J Geophys Res, 113: D17116, doi: 10.1029/2007JD009343
[35]
Zhao L T, Cray D M, Male D H. 1997. Numerical analysis of simultaneous heat and water transfer during infiltration into frozen ground. J Hydrology, 200: 345-363
[36]
Zhuang Q, Melillo J, Kicklighter D W, et al. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Glob Biogeochem Cycle, 18: GB3010, doi: 10.1029/2004GB002239