全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑冻融界面变化的土壤水热耦合模型

, PP. 1572-1587

Keywords: 冻融界面,水热耦合模型,运动边界问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

?土壤的冻结和融化是土壤内部的重要物理过程,其冻融界面位置的移动影响土壤水热特性以及陆面和大气之间的水分能量交换,从而对陆面水热过程产生重要影响.本研究将土壤冻结和融化问题归结为考虑水热耦合的多运动边界问题,利用局部自适应变网格法进行数值离散,发展了考虑冻结和融化界面位置的移动对水热过程影响的土壤水热耦合模型.该模型基于陆面模式分层结构的敏感性试验表明:它能同时连续地追踪多个冻融界面,克服了等温线法在同一土壤层不能同时模拟多个冻融界面的困难,比高分辨率情形下的计算效率提高数倍且计算稳定.利用站点观测对土壤冻融界面的位置、土壤温度和未冻水含量所进行的模拟验证,进一步表明了该模型的合理性以及应用于陆面过程模式的模拟潜力.

References

[1]  Cherkauer K A, Lettenmaier D P. 1999. Hydrologic effects of frozen soils in the upper Mississippi River Basin. J Geophys Res, 104: 19599-19610
[2]  Dai Y J, Zeng X B, Dickinson R E. 2003. The Common land model. Bull Amer Meteor Soc, 84: 1013-1-23
[3]  DeGaetano A T, Cameron M D, Wilks D S. 2001. Physical simulation of maximum seasonal soil freezing depth in the United States using routine weather obervation. J Appl Meteorol, 40: 546-555
[4]  Dickinson R E, Henderson-Sellers A, Kennedy P J. 1993. Biosphere-Atmosphere Transer Scheme (BATS) version as coupled to the NCAR Community Climate Model. NCAR Tech Note
[5]  Flerchinger G N. 2000. The simultaneous heat and water model: Technical documentation. Boise: Technical Report NWRC
[6]  Frauenfeld O W, Zhang T J, Barry R G, et al. 2004. Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res, 109: D05101, doi: 10.1029/2003JD004245
[7]  Flerchinger G N, Saxton K E. 1989. Simultaneous heat and water model of a freezing snow-residue-soil system I, Theory and development. Trans ASABE, 32: 565-571
[8]  Fuchs M, Campbell G S, Papendick R I. 1978. An analysis of sensible and latent heat flow in a partially frozen unsaturated soil. Soil Sci Soc Am J, 42: 379-385
[9]  Hansson K, Simunek J, Mizoguchi M, et al. 2004. Water flow and heat transport in frozen soil numerical solution and freeze-thaw applications. Soil Sci Soc Am J, 3: 693-704
[10]  Harlan R L.1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res, 9: 1314-1323
[11]  Hayashi M, Goeller N, Quinton W L, et al. 2007. A simple heat-conduction method for simulating the frost-table depth in hydrological models. Hydrol Process, 21: 2610-2622
[12]  Jansson P E, Moon D S. 2001. A coupled model of water heat and mass transfer using object orientation to improve flexibility and functionality. Environ Modell Softw, 16: 37-46
[13]  Jason B, Lynch A H, Stuart C F, et al. 2001. The representation of Arctic soils in the land surface model: The importance of mosses. J Clim, 14: 3324-3335
[14]  Li X, Cheng G D, Jin H J, et al. 2008. Cryospheric change in China. Glob Planet Change, 62: 210-218
[15]  Nelson F E, Outcalt S I. 1983. A frost index number for spatial prediction of ground-frost zones. In: Permafrost-Fourth International Conference Proceedings. Washington D C: National Academy Press. 907-911
[16]  Nelson F E, Anisimov O, Shiklomanov N. 2001. Subsidence risk from thawing permafrost. Nature, 410: 889-890
[17]  Niu G Y, Yang Z L. 2006. Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol, 7: 937-952
[18]  Oleson K, Lawrence D, Bonan G, et al. 2010. Technical Description of version 4.0 of the Community Land Model. NCAR Tech Note
[19]  Sellers P J, Randall D A, Collatz G J,et al. 1996. A revised land surface parameterization (SIB2) for atmosphere GCMS. Part I: model formulation. J Clim. 9: 676-705
[20]  Stefan J. 1998. Uber die theorie der eisbildung, insbesondere yber die eisbildung im polarmeere sitzungsber akad. Wiss Wien math Naturwiss K1 Abt, 1: 965-83
[21]  Taylor G S ,Luthin J N. 1978. A model for coupled heat and moisture transfer during soil freezing. Can Geotech J, 15: 548-555
[22]  Woo M K, Arain M A, Mollinga M, et al. 2004. A two-directional freeze and thaw algorithm for hydrologic and land surface modeling. Geophys Res Lett, 31: L12501, doi: 10.1029/2004GL019475
[23]  Xie Z H, Song L Y, Feng X B. 2008. A moving boundary problem derived from heat and water transfer processes in frozen and thawed soils and its numerical simulation. Sci China Ser A, 51: 1510-1521
[24]  Xue Y, Zeng F J, Schlosser C A. 1996. SSIB and its sensitivity to soil propertites—A case study using HAPEX-Mobility data. Glob Planet Change, 13:183-194
[25]  Yi S H, Arain M A, Woo M K. 2006. Modifications of a land surface scheme for improved simulation of ground freeze-thaw in northern environments. Geophys Res Lett, 33: L13501, doi: 10.1029/2006GL026340
[26]  李述训, 程国栋. 1996. 气候变暖条件下青藏高原高温冻土热状况变化趋势数值模拟. 冰川冻土, 18(增刊): 190-196
[27]  李新, 程国栋. 2002. 冻土-气候关系模型评述. 冰川冻土, 24: 315-321
[28]  Kersten M S. 1959. Frost penetration:relationship to air temperature and other factors. Highw Res Board Bull, 225: 45-80
[29]  Li Q, Sun S F, Xue Y K. 2010. Analyses and development of a hierarchy of frozen soil models for cold region study. J Geophys Res, 115: D03107, doi: 10.1029/2009JD012530
[30]  Li X, Koike T. 2003. Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations. Cold Reg Sci Technol, 36: 165-182
[31]  Zhang T, Stanmes K.1998. Impact of climatic factors on the active layer and permafrost at Barrow, Alaska. Permafrost Periglacial Process, 9: 229-246
[32]  Zhang T, Frauenfeld O W, Serreze M C, et al. 2005. Spatial and temporal variabilty in active layer thickness over the Russian Arctic drainage basin. J Geophys Res, 110: D16101, doi: 10.1029/2004JD005642
[33]  Zhang X, Sun S F, Xue Y K. 2007. Development and testing of a frozen soil parameterization for cold region studies. J Hydrmeteorol, 8: 690-701
[34]  Zhang Y S, Carey S K, Quinton W L. 2008. Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions. J Geophys Res, 113: D17116, doi: 10.1029/2007JD009343
[35]  Zhao L T, Cray D M, Male D H. 1997. Numerical analysis of simultaneous heat and water transfer during infiltration into frozen ground. J Hydrology, 200: 345-363
[36]  Zhuang Q, Melillo J, Kicklighter D W, et al. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Glob Biogeochem Cycle, 18: GB3010, doi: 10.1029/2004GB002239
[37]  胡和平, 叶柏生, 周余华, 等. 2006. 考虑冻土的陆面过程模型及其在青藏高原GAME/Tibet试验中的应用. 中国科学D辑: 地球科学, 36: 755-766
[38]  李倩, 孙菽芬. 2007. 通用的土壤水热传输耦合模型的发展和改进研究.中国科学D辑: 地球科学, 37: 1522-1535
[39]  李述训, 程国栋. 1995. 冻融土中的水热输送问题. 兰州: 兰州大学出版社. 111-143
[40]  李述训, 程国栋, 郭东信. 1996. 气候持续变暖条件下青藏高原多年冻土变化趋势数值模拟. 中国科学D辑: 地球科学, 26: 342-347
[41]  雷志栋, 杨诗秀, 谢森传. 1988. 土壤水动力学. 北京: 清华大学出版社. 314
[42]  南卓铜, 李述训, 程国栋. 2004. 未来50与100a青藏高原多年冻土变化情景预测. 中国科学D辑: 地球科学, 34: 528-534
[43]  庞强强, 李述川, 吴通华, 等. 2006. 青藏高原冻土区活动层厚度分布模拟. 冰川冻土, 28: 390-395
[44]  齐布利斯基 R P, 基塔耶夫 B B. 1992. 土中水分凝聚态相界面深度的确定. 冰川冻土, 14: 193-201
[45]  任理, 张瑜芳, 沈荣开. 1998. 条带覆盖下土壤水热动态的田间试验与模型建立. 水利学报, 1: 76-85
[46]  孙淑芬. 2005. 陆面过程的物理、生化过程和参数化模型. 北京: 气象出版社. 53-69
[47]  尚松浩, 雷志栋, 杨诗秀. 1997. 冻结条件下土壤水热耦合迁移数值模拟的改进. 清华大学学报, 37: 62-64
[48]  尚松浩, 毛晓敏, 雷志栋, 等. 2009. 土壤水分动态模拟模型及其应用. 北京: 科学出版社. 65-85
[49]  王澄海, 董文杰, 韦志刚. 2003. 青藏高原季节冻融过程与东亚大气环流关系的研究. 地球物理学报, 46: 309-316
[50]  王澄海, 靳双龙, 吴忠元. 2009. 估算冻结(融化)深度方法的比较及在中国地区的修正和应用. 地球科学进展, 24: 132-141
[51]  王绍令, 赵新民. 1999. 青藏高原多年冻土区地温检测结果分析. 冰川冻土, 21: 159-163
[52]  徐学祖, 王家澄, 张立新. 2001. 冻土物理学. 北京: 科学出版社. 10-11
[53]  杨成松, 程国栋. 2011. 气候变化条件下青藏铁路沿线多年冻土概率预报(Ⅱ): 活动层厚度与沉降变形. 冰川冻土, 33: 469-478
[54]  杨梅学, 姚檀栋, 丁永建, 等. 1999. 藏北高原D110点不同季节土壤温度的日变化特征. 地理科学, 19: 570-574
[55]  杨梅学, 姚檀栋, 勾晓华. 2000. 青藏公路沿线土壤的冻融过程及水热分布特征. 自然科学进展, 10: 443-450
[56]  杨诗秀, 雷志栋, 朱强, 等. 1988. 土壤冻结条件下水热耦合运移的数值模拟. 清华大学学报, 28: 112-120
[57]  张中琼, 吴青柏. 2012. 气候变化情景下青藏高原多年冻土活动层厚度变化预测. 冰川冻土, 34: 505-511

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133