[1] | Ding R Q, Li J P. 2011b. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon Weather Rev, 139: 2421-2438
|
[2] | Duan W S, Mu M. 2009a. Conditional nonlinear optimal perturbation: applications to stability, sensitivity, and predictability. Sci China Ser D-Earth Sci, 52: 883-906
|
[3] | Duan W, Liu X, Zhu K, et al. 2009b. Exploring the initial error that causes a significant spring predictability barrier for El Ni?o events. J Geophy Res, 114: C04022, doi: 10.1029/2008JC004925
|
[4] | Duan W S, Zhang R. 2010. Is model parameter error related to spring predictability barrier for El Ni?o events? Adv Atmos Sci, 27: 1003-1013
|
[5] | Duan W, Yu Y, Xu H, et al. 2012a. Behaviors of nonlinearities modulating El Ni?o events induced by optimal precursory disturbance. Clim Dyn, doi: 10.1007/s00382-012-1557-z
|
[6] | Duan W, Chao W. 2012b. The ‘spring predictability barrier'' for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int J Climatol, doi: 10.1002/joc.351
|
[7] | Duan W, Zhou F. 2013. Nonlinear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus Ser A-Dyn Meteorol Oceanol, 65: 18452
|
[8] | Kleeman R. 2002. Measuring dynamical prediction utility using relative entropy. J Atmos Sci, 59: 2057-2072
|
[9] | Li J P, Ding R Q. 2011. Tempeoral-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon Weather Rev, 139: 3265-3283
|
[10] | Li J P, Ding R Q. 2012. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int J Climatol, 33: 1936-1947
|
[11] | Leung L Y, North G R. 1990. Information theory and climate prediction. J Clim, 3: 5-14
|
[12] | Lorenz E N. 1982. Atmospheric predictability experiments with a large numerical model. Tellus, 34: 505-513
|
[13] | Mu M, Duan W S, Wang J C. 2002. The predictability problems in numerical weather and climate prediction. Adv Atmos Sci, 19: 191-204
|
[14] | Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process Geophys, 10: 493-501
|
[15] | Mu M, Zhou F F, Wang H L. 2009. A method to identify the sensitive areas in targeting for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon Weather Rev, 137: 1623-1639
|
[16] | Mu M, Duan W, Wang Q, et al. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process Geophys, 12: 211-220
|
[17] | Reichler T, Roads J O. 2004. Time-space distribution of long-Rang Atmospheric predictability. J Atmos Sci, 61: 249-263
|
[18] | Roulston M, Smith L. 2002. Evaluating probabilistic forecasts using information theory. Mon Weather Rev, 130: 1653-1660
|
[19] | Schneider T, Griffies S M. 1999. A conceptual framework for predictability studies. J Clim, 12: 3133-3155
|
[20] | Tang Y M, Lin H, Derome J, et al. 2007. A predictability measure applied to seasonal predictions of the Arctic Oscillation. J Clim, 20: 4733-4750
|
[21] | Tang Y M, Lin H, Moore A M. 2008. Measuring the potential predictability of ensemble climate predictions. J Geophys Res, 113: D04108, doi: 10.1029/2007JD008804
|
[22] | 陈宝花, 李建平, 丁瑞强. 2006. 非线性局部Lyapunov指数与大气可预报性研究. 中国科学D辑: 地球科学, 36: 1068-1076
|
[23] | 丁瑞强, 李建平. 2008. 初始误差和参数误差对混沌系统可预报性影响的比较. 地球物理学报, 51: 1007-1012
|
[24] | 丁瑞强, 李建平. 2009a. 非线性误差增长理论在大气可预报性中的应用. 气象学报, 67: 241-249
|
[25] | 丁瑞强, 李建平. 2009b. 天气可预报性的时空分布. 气象学报, 67: 343-354
|
[26] | 黎爱兵, 张立凤, 王秋良, 等. 2013. 非线性误差的信息熵理论及其在可预报性中的应用—以Lorenz系统为例. 中国科学: 地球科学, 9: 1518-1526
|
[27] | 李建平, 曾庆存, 丑纪范. 2000a. 非线性常微分方程的计算不确定性原理Ⅰ: 数值结果. 中国科学E辑: 技术科学, 30: 403-412
|
[28] | 李建平, 曾庆存, 丑纪范. 2000b. 非线性常微分方程的计算不确定性原理Ⅱ: 理论分析. 中国科学E辑: 技术科学, 30: 550-567
|
[29] | 李建平, 丁瑞强, 陈宝花. 2006. 大气可预报性研究的回顾与展望. 21世纪初大气科学沿与展望. 北京: 气象出版社. 96-103
|
[30] | 李建平, 丁瑞强. 2008. 短期气候可预报期限的时空分布. 大气科学, 32: 975-986
|
[31] | 穆穆, 段晚锁. 2003. ENSO可预报性研究的一个新方法: 条件非线性最优扰动. 科学通报, 48: 747-749
|
[32] | 穆穆, 段晚锁. 2005. 条件非线性最优扰动及其在天气和气候可预报性研究中的应用. 科学通报, 50: 2695-2701
|
[33] | 穆穆, 姜智娜. 2007. 集合预报初始扰动产生的一个新方法: 条件非线性最优扰动. 科学通报, 52: 1457-1462
|
[34] | Abramov R, Majda A, Kleeman R. 2005. Information theory and predictability for low-frequency variability. J Atmos Sci, 62: 65-87
|
[35] | Cover T M, Thomas J A. 2006. Elements of Information Theory. 2nd ed. Hoboken: John Wiley. 1-12
|
[36] | DelSole T. 2004. Predictability and information theory. Part I: Measure of predictability. J Atmos Sci, 61: 2425-2440
|
[37] | DelSole T. 2005. Predictability and information theory. Part II: Imperfect Forecast. J Atmos Sci, 61: 3368-3381
|
[38] | DelSole T, Tippett M K. 2007. Predictability: Recent insights from information theory. Rev Geophys, 45: RG4002, doi: 10.1029/2006RG000202
|
[39] | Ding R Q, Li J P. 2007. Nonlinear finite-time Lyapunov exponent and predictability. Phys Lett A, 364: 396-400
|
[40] | Ding R Q, Li J P, Ha K J. 2008a. Nonlinear local Lyapunov exponent and quantification of local predictability. Chin Phys Lett, 25: 1919-1922
|
[41] | Ding R Q, Li J P, Ha K J. 2008b. Trends and interdecadal changes of weather predictability during 1950s-1990s. J Geophys Res, 113: D24112, doi: 10.1029/2008JD010404
|
[42] | Ding R Q, Li J P. 2011a. Comparisons of two ensemble mean methods in measuring the average error growth and the predictability. Acta Meteorol Sin, 25: 395-404
|
[43] | Kullback S, Leibler R A. 1951. On information and sufficiency. Ann Math Stat, 22: 79-86
|
[44] | Yang X Q, Anderson J L, Stern W F. 1998. Reproducible forced modes in AGCM ensemble integration and potential predictability of atmospheric seasonal variations in the extratropics. J Clim, 11: 2942-2959
|
[45] | Yu Y, Mu M, Duan W. 2012. Does model parameter error cause a significant "Spring Predictability Barrier" for El Ni?o events in the Zebiak-Cane Model? J Clim, 25: 1263-1277
|
[46] | Ziehmann C, Smith L, Kurths J. 2000. Localized lyapunov exponents and prediction of predictability. Phys Lett A, 271: 237-251
|