全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非线性误差信息熵理论的大气多变量系统可预报性分析

, PP. 1544-1555

Keywords: 非线性误差,信息熵,多变量系统,可预报期限

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于非线性误差信息熵理论,通过分析非线性误差信息熵和气候态信息熵随时间演变规律,引进了定量估计大气多变量系统可预报性的联合可预报期限和单变量可预报期限,该期限既适合度量气候态信息熵为常值的可预报性,也适合气候态信息熵随时间变化的情形.利用NCEP/NCAR逐日再分析资料,计算了非线性误差信息熵和气候态信息熵随时间演变以及相应的可预报期限,并对冬季大气500hPa温度场、纬向风场和经向风场的各单变量可预报性和三变量联合可预报性进行了分析.结果表明:对于单变量可预报性来说,温度场和纬向风场的可预报性相对较大,经向风场最小,它们的可预报期限具有纬向带状分布特征,尤其是经向风场,其可预报期限在纬向上明显存在3条低值带和4条高值带:对于多变量联合可预报性来说,由于各变量之间相互联系,多变量联合可预报期限不是单变量可预报期限的简单平均或线性组合,其可小于所有单变量的可预报性期限,也可介于各单变量可预报期限之间,且这个特征具有非常明显的区域差异,不同区域具有不同的结果.

References

[1]  Ding R Q, Li J P. 2011b. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon Weather Rev, 139: 2421-2438
[2]  Duan W S, Mu M. 2009a. Conditional nonlinear optimal perturbation: applications to stability, sensitivity, and predictability. Sci China Ser D-Earth Sci, 52: 883-906
[3]  Duan W, Liu X, Zhu K, et al. 2009b. Exploring the initial error that causes a significant spring predictability barrier for El Ni?o events. J Geophy Res, 114: C04022, doi: 10.1029/2008JC004925
[4]  Duan W S, Zhang R. 2010. Is model parameter error related to spring predictability barrier for El Ni?o events? Adv Atmos Sci, 27: 1003-1013
[5]  Duan W, Yu Y, Xu H, et al. 2012a. Behaviors of nonlinearities modulating El Ni?o events induced by optimal precursory disturbance. Clim Dyn, doi: 10.1007/s00382-012-1557-z
[6]  Duan W, Chao W. 2012b. The ‘spring predictability barrier'' for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int J Climatol, doi: 10.1002/joc.351
[7]  Duan W, Zhou F. 2013. Nonlinear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus Ser A-Dyn Meteorol Oceanol, 65: 18452
[8]  Kleeman R. 2002. Measuring dynamical prediction utility using relative entropy. J Atmos Sci, 59: 2057-2072
[9]  Li J P, Ding R Q. 2011. Tempeoral-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon Weather Rev, 139: 3265-3283
[10]  Li J P, Ding R Q. 2012. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int J Climatol, 33: 1936-1947
[11]  Leung L Y, North G R. 1990. Information theory and climate prediction. J Clim, 3: 5-14
[12]  Lorenz E N. 1982. Atmospheric predictability experiments with a large numerical model. Tellus, 34: 505-513
[13]  Mu M, Duan W S, Wang J C. 2002. The predictability problems in numerical weather and climate prediction. Adv Atmos Sci, 19: 191-204
[14]  Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process Geophys, 10: 493-501
[15]  Mu M, Zhou F F, Wang H L. 2009. A method to identify the sensitive areas in targeting for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon Weather Rev, 137: 1623-1639
[16]  Mu M, Duan W, Wang Q, et al. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process Geophys, 12: 211-220
[17]  Reichler T, Roads J O. 2004. Time-space distribution of long-Rang Atmospheric predictability. J Atmos Sci, 61: 249-263
[18]  Roulston M, Smith L. 2002. Evaluating probabilistic forecasts using information theory. Mon Weather Rev, 130: 1653-1660
[19]  Schneider T, Griffies S M. 1999. A conceptual framework for predictability studies. J Clim, 12: 3133-3155
[20]  Tang Y M, Lin H, Derome J, et al. 2007. A predictability measure applied to seasonal predictions of the Arctic Oscillation. J Clim, 20: 4733-4750
[21]  Tang Y M, Lin H, Moore A M. 2008. Measuring the potential predictability of ensemble climate predictions. J Geophys Res, 113: D04108, doi: 10.1029/2007JD008804
[22]  陈宝花, 李建平, 丁瑞强. 2006. 非线性局部Lyapunov指数与大气可预报性研究. 中国科学D辑: 地球科学, 36: 1068-1076
[23]  丁瑞强, 李建平. 2008. 初始误差和参数误差对混沌系统可预报性影响的比较. 地球物理学报, 51: 1007-1012
[24]  丁瑞强, 李建平. 2009a. 非线性误差增长理论在大气可预报性中的应用. 气象学报, 67: 241-249
[25]  丁瑞强, 李建平. 2009b. 天气可预报性的时空分布. 气象学报, 67: 343-354
[26]  黎爱兵, 张立凤, 王秋良, 等. 2013. 非线性误差的信息熵理论及其在可预报性中的应用—以Lorenz系统为例. 中国科学: 地球科学, 9: 1518-1526
[27]  李建平, 曾庆存, 丑纪范. 2000a. 非线性常微分方程的计算不确定性原理Ⅰ: 数值结果. 中国科学E辑: 技术科学, 30: 403-412
[28]  李建平, 曾庆存, 丑纪范. 2000b. 非线性常微分方程的计算不确定性原理Ⅱ: 理论分析. 中国科学E辑: 技术科学, 30: 550-567
[29]  李建平, 丁瑞强, 陈宝花. 2006. 大气可预报性研究的回顾与展望. 21世纪初大气科学沿与展望. 北京: 气象出版社. 96-103
[30]  李建平, 丁瑞强. 2008. 短期气候可预报期限的时空分布. 大气科学, 32: 975-986
[31]  穆穆, 段晚锁. 2003. ENSO可预报性研究的一个新方法: 条件非线性最优扰动. 科学通报, 48: 747-749
[32]  穆穆, 段晚锁. 2005. 条件非线性最优扰动及其在天气和气候可预报性研究中的应用. 科学通报, 50: 2695-2701
[33]  穆穆, 姜智娜. 2007. 集合预报初始扰动产生的一个新方法: 条件非线性最优扰动. 科学通报, 52: 1457-1462
[34]  Abramov R, Majda A, Kleeman R. 2005. Information theory and predictability for low-frequency variability. J Atmos Sci, 62: 65-87
[35]  Cover T M, Thomas J A. 2006. Elements of Information Theory. 2nd ed. Hoboken: John Wiley. 1-12
[36]  DelSole T. 2004. Predictability and information theory. Part I: Measure of predictability. J Atmos Sci, 61: 2425-2440
[37]  DelSole T. 2005. Predictability and information theory. Part II: Imperfect Forecast. J Atmos Sci, 61: 3368-3381
[38]  DelSole T, Tippett M K. 2007. Predictability: Recent insights from information theory. Rev Geophys, 45: RG4002, doi: 10.1029/2006RG000202
[39]  Ding R Q, Li J P. 2007. Nonlinear finite-time Lyapunov exponent and predictability. Phys Lett A, 364: 396-400
[40]  Ding R Q, Li J P, Ha K J. 2008a. Nonlinear local Lyapunov exponent and quantification of local predictability. Chin Phys Lett, 25: 1919-1922
[41]  Ding R Q, Li J P, Ha K J. 2008b. Trends and interdecadal changes of weather predictability during 1950s-1990s. J Geophys Res, 113: D24112, doi: 10.1029/2008JD010404
[42]  Ding R Q, Li J P. 2011a. Comparisons of two ensemble mean methods in measuring the average error growth and the predictability. Acta Meteorol Sin, 25: 395-404
[43]  Kullback S, Leibler R A. 1951. On information and sufficiency. Ann Math Stat, 22: 79-86
[44]  Yang X Q, Anderson J L, Stern W F. 1998. Reproducible forced modes in AGCM ensemble integration and potential predictability of atmospheric seasonal variations in the extratropics. J Clim, 11: 2942-2959
[45]  Yu Y, Mu M, Duan W. 2012. Does model parameter error cause a significant "Spring Predictability Barrier" for El Ni?o events in the Zebiak-Cane Model? J Clim, 25: 1263-1277
[46]  Ziehmann C, Smith L, Kurths J. 2000. Localized lyapunov exponents and prediction of predictability. Phys Lett A, 271: 237-251

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133