全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CH4/CO2/H2O在煤分子结构中吸附的分子模拟

, PP. 1418-1428

Keywords: CH4/CO2/H2O,等量吸附热,吸附等温线,径向分布函数,兖州煤模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

?煤与CH4,CO2和H2O相互作用的分子机制是深入认识流体在煤中的赋存状态、流体诱导的煤溶胀(或收缩)等现象的基础.相对于各种仪器分析技术,基于分子力学、分子动力学及量子化学的分子模拟技术是揭示物质结构与性质间关系、了解物理化学体系中物质相互作用机制的有力工具.本文应用巨正则系综蒙特卡洛(GCMC)及分子动力学(MD)方法对兖州煤模型(C222H185N3O17S5)的吸附行为进行了研究,获得了CH4,CO2与H2O的吸附量、吸附构型以及含氧官能团的影响,并利用等量吸附热及能量变化数据揭示了三种物质的不同吸附机理.(1)单组分CH4,CO2和H2O的等温吸附曲线均与Langmuir模型吻合较好,吸附量相对大小为CH4CO2>CH4:温度越高,等量吸附热越小:压力对吸附热则无明显影响.(3)CH4在孔隙中呈聚集态分布,CO2呈两两交叉的排列形式,H2O分子在氢键作用下,O原子规律地指向周围H2O分子中或煤分子中的H原子:三者分子间距分别为0.421,0.553和0.290nm,径向分布函数显示H2O分子排列最为紧凑并形成紧密分子层.(4)H2O围绕煤表面的含氧官能团形成明显分层分布,作用强度从大到小依次为羟基>羧基>羰基:CO2与CH4仅出现微弱的分层.(5)兖州煤模型吸附CH4,CO2及H2O分子后,体系总能量、体系价电子能和体系非成键能均降低.体系总能量降低幅度表明兖州煤模型中吸附优先顺序为H2O>CO2>CH4.价电子能的降低,表明地质条件下由于压力作用形成的"应变煤",在与流体作用过程中发生结构重排以形成更加稳定的构象,可能是流体与煤作用后产生溶胀的分子机制.范德华力、静电力与氢键力对非成键能降低的不同贡献揭示,煤与CH4的相互作用为典型物理吸附:与CO2的相互作用是以物理吸附为主,并存在微弱的化学吸附:与H2O的作用则是物理化学吸附并存.

References

[1]  Mosher K, He J J, Liu Y Y, et al. 2013. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. Int J Coal Geol, 109-110: 36-44
[2]  Nakamura K, Takanohashi T, Lino M, et al. 1995. A model structure of Zao Zhuang bituminous coal. Energy Fuels, 9: 1003-1010
[3]  Narkiewicz M R, Mathews J P. 2009. Visual representation of carbon dioxide adsorption in a low-volatile bituminous coal molecular model. Energy Fuels, 23: 5236-5246
[4]  Nishino J. 2001. Adsorption of water vapor and carbon dioxide at carboxylic functional. Fuel, 80: 757-764
[5]  Ottiger S, Pini R, Storti G, et al. 2008. Competitive adsorption equilibria of CO2 and CH4 on a dry coal. Adsorption, 14: 539-556
[6]  Park S H, Sposito G. 2000. Monte Carlo simulation of total radial distribution functions for interlayer water in Li-, Na-, and K-montmorillonite hydrates. J Phys Chem B, 104: 4642-4648
[7]  Pini R, Ottiger S, Storti G, et al. 2009. Pure and competitive adsorption of CO2, CH4 and N2 on coal for ECBM. Energy Proc, 1: 1705-1710
[8]  Romanov V. 2007. Coal chemistry for mechanical engineers: From macromolecular thermodynamics to reservoir simulation. Energy Fuels, 21: 1646-1654
[9]  Saghafi A, Faiz M, Roberts D. 2007. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia. Int J Coal Geol, 70: 240-254
[10]  Shimada S, Li H Y, Oshima Y, et al. 2005. Displacement behavior of CH4 adsorbed on coals by injecting pure CO2, N2 and CO2-N2 mixture. Environ Geol. 49: 44-52
[11]  Sun P D. 2001. Study on the mechanism of interaction for coal and methane gas. J Coal Sci Eng, 7: 58-63
[12]  Takanohashi T, Lino M, Nakamura K. 1998, Simulation of interaction of coal associates with solvents using the molecular dynamics calculation. Energy Fuels, 12: 1168-1173
[13]  Tambach T J, Mathews J P, Bergen F V. 2009. Molecular exchange of CH4 and CO2 in coal enhanced coalbed methane on a nanoscale. Energy Fuels, 23, 4845-4847
[14]  Thomas G F. 1996. Coalbed methane potential of some Variscan foredeep basins. Geol Soc, 109: 13-26
[15]  White C M, Smith D H, Jones K L, et al. 2005. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: A review. Energy Fuels, 19: 659-724
[16]  Xiang J H, Zeng F G, Liang H Z, et al. 2011. Model construction of the macromolecular structure of Yanzhou Coal and its molecular simulation. J Fuel Chem Technol, 39: 481-488
[17]  曹达鹏, 高广图, 汪文川. 2000. 巨正则系综Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储. 化工学报, 1: 23-30
[18]  陈昌国, 魏锡文, 鲜学福. 2000. 用从头计算研究煤表面与甲烷分子相互作用. 重庆大学学报, 23: 77-83
[19]  陈振隆, 徐为人, 汤立达. 2007. 分子模拟的理论与实践. 北京: 化学工业出版社. 79-80
[20]  崔永君, 张庆玲, 杨锡禄. 2003. 不同煤的吸附性能及等量吸附热的变化规律. 天然气工业, 23: 130-131
[21]  崔永君, 张群, 张泓, 等. 2005. 不同煤对CH4, N2和CO2单组分气体的吸附. 天然气工业, 25: 61-65
[22]  代世峰, 张贝贝, 朱长生, 等. 2009. 河北开滦矿区晚古生代煤对CH4/CO2二元气体等温吸附特性. 煤炭学报, 34: 578-583
[23]  傅献彩, 沈文霞, 姚天扬. 1993. 物理化学(下册). 北京: 高等教育出版社. 950
[24]  荆雯. 2007. 甲烷在构造煤中吸附和扩散的分子模拟. 硕士学位论文. 太原: 太原理工大学
[25]  蔺金太, 郭勇义, 吴世跃. 2001. 煤层气注气开采中煤对不同气体的吸附作用. 太原理工大学学报, 32: 18-20
[26]  秦勇, 朱旺喜. 2006. 中国煤层气产业发展所面临的若干科学问题. 中国科学基金, 20: 148-152
[27]  苏现波, 林晓英. 2009. 煤层气地质学. 北京: 煤炭工业出版社. 119
[28]  孙晓岩, 李建伟, 李英霞, 等. 2008. 苯与丙烯在b分子筛上吸附行为的蒙特卡罗研究. 化学学报, 15: 1810-1814
[29]  唐书恒, 汤达祯, 杨起. 2004. 二元气体等温吸附-解吸中气分的变化规律. 中国矿业大学学报, 33: 448-452
[30]  王冬一, 薛春瑜, 仲崇立. 2009. 金属-有机骨架材料二聚铜-苯-1,3,5三羧酸酯中烷烃扩散机理的分子模拟研究. 物理学报, 8: 5552-5558
[31]  于洪观, 范维唐, 孙茂远, 等. 2005. 煤对CH4/CO2二元气体等温吸附特性及其预测. 煤炭学报, 30: 618-622
[32]  翟光华, 段利江, 唐书恒, 等. 2012. 二氧化碳与煤作用机理的实验研究. 煤炭学报, 37: 788-793
[33]  张天军, 许鸿杰, 李树刚, 等. 2009. 温度对煤吸附性能的影响. 煤炭学报, 34: 802-805
[34]  张子戌, 刘高峰, 张小东, 等. 2009. CH4/CO2不同浓度混合气体的吸附-解吸实验. 煤炭学报, 34: 551-555
[35]  郑仲. 2009. 神东煤镜质组结构特征及其对CH4, CO2和H2O吸附的分子模拟. 硕士学位论文. 太原: 太原理工大学
[36]  钟玲文, 郑玉柱, 员争荣, 等. 2002. 煤在温度和压力综合影响下的吸附性能及气含量预测. 煤炭学报, 27: 581-585
[37]  周来, 冯启言, 秦勇. 2011. CO2和CH4在煤基质表面竞争吸附的热力学分析. 煤炭学报, 36: 1307-1311
[38]  Astashov A V, Belyi A A, Bunin A V. 2008. Quasi-equilibrium swelling and structural parameters of coals. Fuel, 87: 3455-3461
[39]  Brochard L, Vandamme M, Pellenq R J M, et al. 2012. Adsorption-induced deformation of microporous materials coal. Langmuir, 28: 2659-2670
[40]  Busch A, Gensterblum Y, Krooss B M. 2003. Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: Pure components and mixtures. Int J Coal Geol, 55: 205-224
[41]  Busch A, Gensterblum Y, Krooss B M, et al.. 2006. Investigation of high pressure selective adsorption/desorption CO2 and CH4 on coals: An experimental study. Int J Coal Geol, 66: 53-68
[42]  Bustin R M, Clarkson C R. 1998. Geological controls on coalbed methane reservoir capacity and gas content. Int J Coal Geol, 38: 3-26
[43]  Carlson G A. 1992. Computer simulation of the molecular structure of bituminous coal. Energy Fuels, 6: 771-778
[44]  Day S, Sakurovs R, Weir S. 2008. Supercritical gas sorption on moist coals. Int J Coal Geol, 74: 203-214
[45]  Einstein A. 1905. On the movement of small particles suspend edina stationary liquid demanded by the molecular-kinetic theory of heat. Ann Phys (Leipzig), 17: 549-560Ewald P P. 1921. Die berechnung optischer und elekrostatischer gitterpotentiale. Ann Phys, 369: 253-287
[46]  Goodman A L, Campus L M, Schroeder K T. 2005. Direct evidence of carbon dioxide sorption on Argonne premium coals using attenuated total reflectance-fourier transform infrared spectroscopy.Energy Fuels, 19: 471-476
[47]  Goodman A L, Favors R N, Larsen J W. 2006. Argonne coal structure rearrangement caused by sorption of CO2. Energy Fuels, 20: 2537-2543
[48]  Goodman A L. 2009. A comparison study of carbon dioxide adsorption on polydimethylsiloxane, silica gel, and Illinois no. 6 coal using in situ infrared spectroscopy. Energy Fuels, 23: 1101-1106
[49]  Hu H X, Li X C, Fang Z M. 2010. Small-molecule gas sorption and diffusion in coal molecular simulation. Energy, 35: 2939-2944
[50]  Jhon Y H, Cho M, Jeon H R, et al. 2007. Simulation of methane adsorption and diffusion within alkoxy-functionalized IRMOFs exhibiting severely disordered crystal structure. J Phys Chem C, 111: 16618-16625
[51]  Karasawa N, Goddard W A. 1992. Force fields, structures, and properties of polyvinylidene fluoride crystal. Macromolecules, 25: 7268-7281
[52]  Krooss B M, van Bergen F, Gensterblum, Y, et al. 2002. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int J Coal Geol, 51: 69-91
[53]  Larsen J W, Flowers R A, Hall P J, et al. 1997. Structural rearrangement of strained coals. Energy Fuels, 11: 998-1002
[54]  Larsen J W. 2004. The effects of dissolved CO2 on coal structure and properties. Int J Coal Geo, 57: 63-70
[55]  Levy J H, Day S J, Killingley J S. 1997. Methane capacities of Bowen Basin coals related to coal properties. Fuel, 76: 813-819
[56]  Liu Y Y, Wilcox J. 2012. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons. Environ Sci Technol, 46: 1940-1947
[57]  Mastalerz M, Gluskoter H, Rupp J. 2004. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA. Int J Coal Geol, 60: 43-55
[58]  Mayo S L, Olafso B D, Goddard W A. 1990. Dreiding: A generic forcefield. J Phys Chem, 94: 8897-8909
[59]  Metropolis N, Rosenbluth A W, Marshall N, et al. 1953. Equation of state calculations by fast computing machines. J Chem Phys, 21: 1087-1092
[60]  Yang K, Lu X C, Lin Y Z. 2010. Deformation of coal induced by methane adsorption at geological conditions. Energy Fuels, 24: 5955-5964
[61]  Yang Q Y, Zhong C L. 2006a. Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: A computational study. ChemPhysChem, 7: 1417-1421
[62]  Yang Q Y, Zhong C L. 2006b. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J Phys Chem B, 110: 17776-17783

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133