全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

雅鲁藏布江结合带中段早奥陶世强过铝质花岗岩的厘定及其地质意义

, PP. 1388-1402

Keywords: 雅鲁藏布江结合带,早奥陶世,强过铝质花岗岩,碰撞背景,地壳基底

Full-Text   Cite this paper   Add to My Lib

Abstract:

?对位于雅鲁藏布江结合带中段的夏如花岗岩体进行了LA-ICP-MS锆石U-Pb同位素定年和岩石地球化学的研究.结果表明,2件样品的锆石206Pb/238U年龄加权平均值分别为(474.9±2.3)和(478.3±1.7)Ma,代表了花岗岩的形成年龄,是雅鲁藏布江结合带内首次发现的早奥陶世岩浆活动记录.该花岗岩无角闪石,含电气石,为高钾钙碱性系列,铝饱和指数A/CNK>1.1(1.10~1.20),富集Rb,Th和U,相对亏损Ba,Nb,Sr,Zr,Ti和Eu等,属强过铝质的S型花岗岩,是同碰撞背景下地壳中泥岩质成分部分熔融的产物.结合前人研究资料和本文数据提出,夏如岩体的形成很可能与原特提斯洋向冈瓦纳大陆北缘俯冲过程中的安第斯型造山作用有关,是大洋消减作用进行到一定阶段后,冈瓦纳大陆北缘的地块或微地块之间发生碰撞而使地壳加厚、上地壳重熔形成的强过铝质花岗岩.夏如早奥陶世花岗岩的厘定也指示了其围岩可能形成于寒武或前寒武纪,夏如地区可能存在地壳基底.

References

[1]  潘桂棠, 丁俊, 王立全, 等. 2004. 1:1500000青藏高原及邻区地质图及说明书. 成都: 成都地图出版社
[2]  潘晓萍, 李荣社, 王超, 等. 2012. 西藏冈底斯北缘尼玛地区帮勒村一带寒武纪火山岩LA-ICP-MS锆石U-Pb年龄及其地球化学特征. 地质通报, 31: 63-74
[3]  时超, 李荣社, 何世平, 等. 2010. 藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 29: 1745-1753
[4]  史仁灯. 2007. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约. 科学通报, 52: 223-227
[5]  孙志明, 董瀚, 廖光宇, 等. 2005. 东喜马拉雅构造结南迦巴瓦岩群花岗质片麻岩的初步研究. 沉积与特提斯地质, 25: 1-10
[6]  王立全, 潘桂棠, 李才, 等. 2008. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄——兼论原-古特提斯洋的演化. 地质通报, 27: 2045-2056
[7]  王晓先, 张进江, 杨雄英, 等. 2011. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义. 地学前缘, 18: 127-139
[8]  王中刚, 于学元, 赵振华, 等. 1989. 稀土元素地球化学. 北京: 科学出版社
[9]  吴新国, 贾建称, 崔邢涛. 2005. 雅鲁藏布江缝合带开合演化模式的探讨. 现代地质, 19: 488-494
[10]  吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49: 1589-1604
[11]  夏斌, 徐力峰, 张玉泉, 等. 2008. 西藏南部康马花岗岩锆石SHRIMP U-Pb年龄.矿物岩石, 28: 72-76
[12]  熊昌利, 贾小川, 杨学俊. 等. 2012. 滇西龙陵地区勐冒奥陶纪二长花岗岩LA-ICP-MS锆石U-Pb定年及其构造环境. 地质通报, 31: 277-286
[13]  徐向珍, 杨经绥, 李天福, 等. 2007. 青藏高原拉萨地块松多榴辉岩的锆石SHRIMP U-Pb年龄及锆石中的包裹体. 地质通报, 26: 1340-1355
[14]  许志琴, 杨经绥, 梁凤华, 等. 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录. 岩石学报, 21: 1-12
[15]  闫义, 林舸, 李自安. 2003. 利用锆石形态、成分组成及年龄分析进行沉积物源区示踪的综合研究. 大地构造与成矿学, 27: 184-190
[16]  杨经绥, 许志琴, 耿全如, 等. 2006. 中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地块中发现榴辉岩带. 地质学报, 80: 1787-1792
[17]  杨经绥, 许志琴, 李天福, 等. 2007. 青藏高原拉萨地块中的大洋俯冲型榴辉岩: 古特提斯洋盆的残留? 地质通报, 26: 1277-1287
[18]  翟庆国, 李才, 黄小鹏. 2007. 西藏羌塘中部古特提斯洋残片——来自果干加年山变质基性岩地球化学证据. 中国科学D辑: 地球科学, 37: 866-872
[19]  翟庆国, 王军, 李才, 等. 2010. 青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征. 中国科学D辑: 地球科学, 40: 565-573
[20]  张宏飞, 徐旺春, 郭建秋, 等. 2007. 冈底斯南缘变形花岗岩错石U-Pb年龄和Hf同位素组成: 新特提斯洋早侏罗世俯冲作用的证据. 岩石学报, 23: 1347-1353
[21]  张泽明, 王金丽, 沈昆, 等. 2008a. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据. 岩石学报, 24: 1627-1637
[22]  张泽明, 王金丽, 赵国春, 等. 2008b. 喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化. 岩石学报, 24: 1477-1487
[23]  周志广, 刘文灿, 梁定益. 2004. 藏南康马奥陶系及其底砾岩的发现并初论喜马拉雅沉积盖层与统一变质基底的关系. 地质通报, 23: 655-663
[24]  朱弟成, 莫宣学, 王立全, 等. 2009. 西藏冈底斯东部察隅高分异I型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学D辑: 地球科学, 39: 833-848
[25]  朱弟成, 赵志丹, 牛耀龄, 等. 2012. 拉萨地块的起源和古生代构造演化. 高校地质学报, 18: 1-15
[26]  Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb. Chem Geol, 192: 59-79
[27]  Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46: 605-626
[28]  Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol, 48: 43-55
[29]  Belousova E A, Griffin W L, Suzanne Y, et al. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 143: 602-622
[30]  Brookfield M E. 1993. The Himalayan passive margin from Precambrian to Cretaceous. Sediment Geol, 84: 1-35
[31]  Catlos E J, Harrison T M, Manning C E, et al. 2002. Records of the evolution of the Himalayan orogen fron in situ Th-Pb ion microprobe dating of monazite: Eastern Hepal and Western Garhwal. J Asian Earth Sci, 20: 459-470
[32]  Cawood P A, Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci Rev, 82: 217-256
[33]  Cawood P A, Johnson M R W, Nemchin A A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet Sci Lett, 255: 70-84
[34]  Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geol, 8: 173-174
[35]  Chappell B W. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46: 535-551
[36]  Chen S Y, Yang J S, Li Y, et al. 2009. Ultramafic blocks in Sumdo region, Lhasa Block, eastern Tibet Plateau: An ophiolite unit. J Earth Sci, 20: 332-347
[37]  Dong X, Zhang Z M, Santosh M. 2010. Zircon U-Pb chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau: Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic metamorphism. J Geol, 118: 677-690
[38]  Eby G N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their Petrogenesis. Lithos, 26: 115-134
[39]  Foster G L. 2000. The pre-Neogene thermal history of the Nanga Parhat Haramosh Massif and the NW Himalaya. Doctoral Dissertation. The Milton Keynes: Open University. 345
[40]  Frost B R, Barnes C G, Collins W J. 2001. A geochemical classification for granitic rocks. J Petrol, 42: 2033-2048
[41]  Gansser A. 1964. The Geology of the Himalayas. London: Wiley Interscience
[42]  Garzanti E, Casnedi R, Jadoul E. 1986. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. Sediment Geol, 48: 237-265
[43]  Gehrels G E, DeCelles P G, Martin A, et al. 2003. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt. GAS Today, 13: 4-9
[44]  Guynn J, Kapp P, Gehrels G, et al. 2012. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. J Asian Earth Sci, 43: 23-50
[45]  Harris N B W, Inger S. 1992. Trace element modelling of pelite-derived granites. Contrib Mineral Petrol, 110: 46-56
[46]  Hoskin P W O, Ireland T R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28: 627-630
[47]  Hoskin P W O, Schaltegger U. 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev Mineral Geochem, 53: 27-62
[48]  Lassiter J C, DePaolo D J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints. In: Mahoney J, ed. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph 100. Washington DC: American Geophysical Union Press. 335-355
[49]  Li X H, Li Z X, Li W X, et al. 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian magmatic arc in the Hainan Island. J Geol, 114: 341-353
[50]  Li X H, Li Z X, Li W X, et al. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in respond to foundering of a subducted flat-slab? Lithos, 96: 186-204
[51]  Li Z L, Yang J S, Xu X Z, et al. 2009. Geochemistry and Sm-Nd and Rb-Sr isotopic compositions of eclogite in the Lhasa terranet, Tibet, and its geological significance. Lithos, 109: 240-247
[52]  Liu S, Hu R Z, Gao S, et al. 2009. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China. J Asian Earth Sci, 36: 168-182
[53]  Liu Y S, Gao S, Hu Z C, et al. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol, 51: 537-571
[54]  Liu Y S, Hu Z C, Zong K Q, et al. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull, 55: 1535-1546
[55]  Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34-43
[56]  Vavra G, Gebauer D, Schmid R. 1996. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): Anion microprobe (SHRIMP) study. Contrib Mineral Petrol, 122: 337-358
[57]  Vavra G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: Geochronology of the Ivren zone (Southern Alps). Contrib Mineral Petrol, 134: 380-404
[58]  Whalen J B, Currie K I, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 95: 407-419
[59]  Wolf M B, London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: An experimental study of solubilities and mechanism. Geochim Cosmochim Acta, 58: 4127-4145
[60]  董春艳, 李才, 万渝生, 等. 2011. 西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式: 构造归属及物源区制约. 中国科学: 地球科学, 41: 299-308
[61]  董美玲, 董国臣, 莫宣学, 等. 2012. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义. 岩石学报, 28: 1453-1464
[62]  耿全如, 彭智敏, 张璋. 2011. 喜马拉雅东构造结地区雅鲁藏布江蛇绿岩地质年代学研究. 地质学报, 85: 1116-1127
[63]  和钟铧, 杨德明, 郑常青, 等. 2006. 冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束. 地质论评, 52: 100-106
[64]  胡培远, 李才, 苏犁, 等. 2010. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年: 泛非与印支事件的年代学记录. 中国地质, 37: 1050-1061
[65]  计文化, 陈守建, 赵振明, 等. 2009. 西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义. 地质通报, 28: 1350-1354
[66]  解超明, 李才, 苏黎, 等. 2010. 藏北安多地区花岗片麻岩锆石LA-ICP-MS U-Pb定年. 地质通报, 29: 1737-1744
[67]  李才, 董永胜, 翟庆国, 等. 2008a. 青藏高原羌塘早古生代蛇绿岩-堆晶辉长岩的锆石SHRIMP定年及其意义. 岩石学报, 24: 31-36
[68]  李才, 黄小鹏, 翟国庆, 等. 2006. 龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界. 地学前缘, 13: 136-147
[69]  李才, 吴彦旺, 王明, 等. 2010. 青藏高原泛非-早古生代造山事件研究重大进展: 冈底斯地区寒武系和泛非造山不整合的发现. 地质通报, 29: 1733-1736
[70]  李才, 谢尧武, 沙绍礼, 等. 2008b. 藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年. 地质通报, 27: 64-68
[71]  李才, 翟国庆, 董永胜, 等. 2007. 青藏高原龙木错-双湖板块缝合带与羌塘古特提斯洋演化记录. 地质通报, 26: 13-21
[72]  李才, 翟庆国, 董永胜, 等. 2008c. 冈瓦纳大陆北缘早期的洋壳信息—来自青藏高原羌塘中部早古生代蛇绿岩的依据. 地质通报, 27: 1605-1612
[73]  李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义. 科学通报, 52: 981-992
[74]  廖忠礼, 莫宣学, 潘桂棠, 等. 2006. 西藏过铝花岗岩的岩石化学特征及成因探讨. 地质学报, 80: 1329-1341
[75]  刘琦胜, 叶培盛, 吴中海. 2012. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征. 地质通报, 31: 250-257
[76]  刘文灿, 梁定益, 王克友, 等. 2002. 藏南康马地区奥陶系的发现及其地质意义. 地学前缘, 9: 247-248
[77]  刘小汉, 琚宜太, 韦利杰, 等. 2009. 再论雅鲁藏布江缝合带构造模型. 中国科学D辑: 地球科学, 39: 448-463
[78]  Ludwing K R. 2003. Isoplot/Ex version 3.00—A geochronology toolkit for Microsoft Excel. Berkeley Geochronol Center Spec Publ, 4: 1-70
[79]  Pearce J A, Harris N B W, Tingleng A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 25: 956-983
[80]  Pullen A, Kapp P, Gehrels G E, et al. 2011. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Geol Soc Am Bull, 123: 585-600
[81]  Quigley M C, Yu L J, Gregory C, et al. 2008. U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet. Tectonophy, 446: 97-113
[82]  Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247-263
[83]  Rubatto D, Scambelluri M. 2003. U-Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps). Contrib Mineral Petrol, 146: 341-355
[84]  Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol, 184: 123-138
[85]  Stocklin J, Bhattarai K D. 1977. Geology of the Kathmandu area and central Manhabharat Range, Nepal. Himalayan Report, Department of Mines and Geology, Nepal. 86
[86]  Stocklin J. 1980. Geology of NePal and regional frame. J Geol Soc London, 137: 1-34
[87]  Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implication for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc Spec Publ London, 42: 313-345
[88]  Sylvester P J. 1998. Post-collisional strong peralumious granites. Lithos, 45: 29-44
[89]  Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication
[90]  Valdiya K S. 1995. Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya. Precambrian Res, 74: 35-55
[91]  Wu F Y, Jahn B M, Wilder S A, et al. 2003. Highly fractionated I-type granites in NE China(I): Geochronology and petrogenesis. Lithos, 66: 241-273
[92]  Yang J S, Xu Z Q, Li Z L, et al. 2009. Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys? J Asian Earth Sci, 34: 76-89
[93]  Zhu D C, Pan G T, Chung S L, et al. 2008. SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic Volcanic rocks from the Yeba Formation, Southern Gangdese in south Tibet. Int Geol Rev, 50: 442-471
[94]  Zhu D C, Zhao Z D, Niu Y L, et al. 2011. Lhasa Terrane in southern Tibet came from Australia. Geology, 39: 727-730
[95]  Zhu D C, Zhao Z D, Niu Y L, et al. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chem Geol, 328: 290-308

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133