全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北京大气气溶胶中硫氧稳定同位素组成研究

, PP. 1556-1560

Keywords: 北京气溶胶,多硫同位素,氧同位素,非质量分馏

Full-Text   Cite this paper   Add to My Lib

Abstract:

?使用MAT-253同位素质谱仪对北京大气气溶胶中多硫同位素(32S,33S,34S和36S)与氧同位素(16O和18O)组成特征进行分析.北京大气气溶胶中δ34S变化范围为1.68‰~12.57‰,平均值为5.86‰,表明该地区主要硫源与燃煤排放相关:δ18O变化范围为-5.29‰~9.02‰,平均值为5.17‰,说明气溶胶中的硫酸盐以二次硫酸盐为主.在2008年7和8月,大气SO2主要以酸性条件下H2O2的异相氧化为主,而在9和10月,大气SO2同时存在酸性条件下H2O2异相氧化和过量O2下Fe3+催化氧化.北京大气气溶胶存在显著的硫同位素非质量分馏效应,通过对Δ33S与CAPE相关性分析,发现其形成机制不仅与平流层SO2的光化学反应有关,还可能与热化学反应机制关联.

References

[1]  郭照冰, 包春晓, 陈天蕾, 等. 2011. 北京奥运期间气溶胶中水溶性无机离子浓度特征及来源解析. 大气科学学报, 34: 683-687
[2]  洪业汤, 张鸿斌, 朱詠煊. 1992. 中国煤的硫同位素组成特征及燃煤过程硫同位素分馏. 中国科学: B辑 化学 生命科学 地学, 22: 868-873
[3]  刘锋, 李延河, 林建. 2008. 北京永定河流域地下水氢氧同位素研究及环境意义. 地球学报, 29: 161-166
[4]  李令军, 王英, 徐谦, 等. 2009. 奥运期间北京大气降水酸化趋势及湿沉降来源探讨. 环境科学学报, 29: 2017-2024
[5]  Sun T, Bao H M. 2011b. Thermal-gradient induced non-mass-dependent isotope fractionation. Rapid Commun Mass Sp, 25: 765-773
[6]  Tanaka N, Rye D M, Xiao Y, et al. 1994. Use of stable sulfur isotope systematic for evaluating oxidation reaction pathways and in-cloud scavenging of sulfur-dioxide in the atmosphere. Geophys Res Lett, 21: 1519-1522
[7]  Toyama K, Satake H, Takashima S, et al. 2007. Long-range transportation of contaminations from the Asian Continent to The Northern Japan Alps, recorded in snow cover on Mt Nishi-Hodaka-Dake. Bull Glaciol Res, 24: 37-47
[8]  Watanabe Y, Farquhar J, Ohmoto H. 2009. Anomalous fractionations of sulfur isotopes during thermo chemical sulfate reduction. Science, 324: 370-373
[9]  罗维均, 王世杰. 2008. 贵州凉风洞大气降水-土壤水-滴水的δ18O信号传递及其意义. 科学通报, 53: 2071-2076
[10]  宋柳霆, 刘丛强, 王中良, 等. 2008. 贵州红枫湖硫酸盐来源及循环过程的硫同位素地球化学研究. 地球化学, 37: 556-564
[11]  薛彦山. 2009. 亚热带小流域河流水体稳定碳、硫同位素特征及其对风化的指示意义. 硕士学位论文. 北京: 首都师范大学. 1-47
[12]  张鸿斌, 胡霭琴, 卢承祖, 等. 2002. 华南地区酸沉降的硫同位素组成极其环境意义. 中国环境科学, 22: 165-169
[13]  张苗云, 王世杰, 马国强, 等. 2011. 大气环境的硫稳定同位素组成及示踪研究. 中国科学: 地球科学, 41: 216-224
[14]  郑淑蕙, 侯发高, 倪葆龄. 1983. 我国大气降水的氢氧稳定同位素研究. 科学通报, 28: 801-806
[15]  Bao H M, Reheis M C. 2003. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States. J Geophys Res, 108: 4430-4438
[16]  Eriksen T E. 1972a. Sulphur isotope effects. I. The isotopic exchange coefficient for the sulphur isotopes 34S-32S in the system SO2g-HSO-3aq at 25, 35, and 45℃. Acta Chem Scand, 26: 573-580
[17]  Eriksen T E. 1972b. Sulphur isotope effects. III. Enrichment of 34S by chemical exchange between SO2g and aqueous solutions of SO2. Acta Chem Scand, 26: 975-979
[18]  Farquhar J, Savarino J, Airieau S, et al. 2001. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. J Geophys Res, 106: 32829-32839
[19]  Farquhar J, Peters M, Johnston D T, et al. 2007. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulfur chemistry. Nature, 449: 706-709
[20]  Holt B D, Kumar R, Cunningham P T. 1981. Oxygen-18 study of the aqueous-phase oxidation of sulfur dioxide. Atmos Environ, 15: 557-566
[21]  Holt B D, Cunningham P T, Engelkemeir A G, et al. 1983. Oxygen-18 study of nonaqueous-phase oxidation of sulfur dioxide. Atmos Environ, 17: 625-632
[22]  Jenkins K A, Bao H M. 2006. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA. Atmos Environ, 40: 4528-4537
[23]  Liang J, Jacobson M Z. 1999. A study of sulfur dioxide oxidation pathways over a range of liquid water contents, pH values, and temperatures. J Geophys Res, 104: 13749-13769
[24]  Masterson A L, Farquhar J, Wing B A. 2011. Sulfur mass-independent fractionation patterns in the broadband UV photolysis of sulfur dioxide: Pressure and third body effects. Earth Planet Sci Lett, 306: 253-260
[25]  Mukai H, Tanaka A, Fujii T, et al. 2001. Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environ Sci Technol, 35: 1064-1071
[26]  Norman A L, Belzer W, Barrie L. 2004. Insights into the biogenic contribution to total sulphate in aerosol precipitation in the Fraser Valley afforded by isotopes of sulphur and oxygen. J Geophys Res, 109: 5311-5320
[27]  Norman A L, Anlauf K, Hayden K, et al. 2006. Aerosol sulphate and its oxidation on the Pacific NW coast: S and O isotopes in PM2.5. Atmos Environ, 40: 2676-2689
[28]  Sun T, Bao H M. 2011a. Non-mass-dependent 17O anomalies generated by a superimposed thermal gradient on a rarefied O2 gas in a closed system. Rapid Commun Mass Sp, 25: 20-24

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133