全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多正则化参数约束的四维变分同化方法及其对台风预报的影响

, PP. 1532-1543

Keywords: 多正则化参数,四维变分同化,台风初始化

Full-Text   Cite this paper   Add to My Lib

Abstract:

?Tikhonov正则化反问题思想应用于变分同化时,通常引入的单正则化参数并不能同时满足不同观测资料的误差特性.针对传统四维变分同化(4D-Var)中不同观测资料分别引入不同正则化参数,提出基于多正则化参数约束的4D-Var(Tikh-4D-Var):同时,鉴于实际维数巨大同化系统中多正则化参数难于计算问题,基于同化系统后验估计信息,引入一种新的多正则化参数选择方法,相比于传统正则化参数选择方法,该方法计算量较小.基于WRF3.3.14D-Var同化系统,利用2010年Chaba台风个例开展bogus资料同化台风初始化应用试验,结果表明:结合引入的多正则化参数选择方法,Tikh-4D-Var方法相比于传统4D-Var方法更快达到收敛标准,迭代次数更少:同时,相比于传统4D-Var方法,Tikh-4D-Var方法呈现出更优的同化和预报效果,使得72h路径和强度预报误差减小的同时,进一步改善了台风的内部结构信息:多正则化参数在一定程度上可反应同化系统中观测资料误差方差给定的准确性.

References

[1]  黄思训, 韩威, 伍荣生. 2003. 结合反问题技巧对一维海温模式变分资料同化的理论分析与数值试验. 中国科学D辑: 地球科学, 33: 903-911
[2]  黄思训, 伍荣生. 2001. 大气科学中的数学物理问题. 北京: 气象出版社. 411
[3]  黄小刚, 费建芳, 张根生, 等. 2004. 一种台风海面非对称风场的构造方法. 热带气象学报, 20: 129-136
[4]  李俊, 黄思训. 2001. 改进的偏差原则在大气红外遥感及反演中的应用. 中国科学D辑: 地球科学, 31: 70-80
[5]  邱崇践, 张蕾, 邵爱梅. 2007. 一种显式四维变分资料同化方法. 中国科学D辑: 地球科学, 37: 698-704
[6]  田向军, 谢正辉. 2009. 基于本征正交分解的显式思维变分同化方法: 理论与验证. 中国科学D辑: 地球科学, 39: 529-536
[7]  赵延来, 黄思训, 杜华栋, 等. 2011. 正则化方法同化多普勒天气雷达资料及对降雨预报的影响. 物理学报, 60: 882-893
[8]  钟剑, 费建芳, 黄思训, 等. 2012. 模式误差弱约束四维变分同化研究. 物理学报, 61: 149203
[9]  Budd C J, Freitag M A, Nichols N K. 2011. Regularization techniques for ill-posed inverse problems in data assimilation. Comput Fluids, 46: 168-173
[10]  Chapnik B, Desroziers G, Rabier F, et al. 2004. Properties and first application of an error-statistics tuning method in variational assimilation. Q J R Meteorol Soc, 130: 2253-2275
[11]  Chapnik B, Desroziers G, Rabier F, et al. 2006. Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Q J R Meteorol Soc, 132: 543-565
[12]  Desroziers G, Ivanov S. 2001. Diagnosis and adaptive tuning of information error parameters in a variational assimilation. Q J R Meteorol Soc, 127: 1433-1452
[13]  Girard D. 1987. A fast Monte Carlo cross-validation procedure for large least-squares problems with noisy data. Technical Report. IMAG
[14]  Huang X Y, Xiao Q N, Barker D M, et al. 2009. Four dimensional variational data assimilation for WRF: Formulation and preliminary results. Mon Weather Rev, 137: 299-314
[15]  Johnson C, Hoskins B J, Nichols N K. 2005. A singular vector perspective of 4D-Var: Filtering and interpolation. Q J R Meteorol Soc, 131: 1-19
[16]  Johnson C, Nichols N K, Hoskins B J. 2000. Very large inverse problems in atmosphere and ocean modeling. Int J Numer Methods Fluids, 00: 1-6
[17]  Johnson C, Nichols N K, Hoskins B J. 2004. Very Large Inverse Problems in Atmosphere and Ocean Modeling. Technical Report. Reading: University of Reading
[18]  Ma Z H, Fei J F, Huang X G, et al. 2012. Sensitivity of tropical cyclone intensity and structure to vertical resolution in WRF. Asia Pac J Atmos Sci, 48: 67-81
[19]  Steinwagner J, Schwarz G, Hilgers S. 2006. Use of a maximum entropy method as a regularization technique during the retrieval of trace gas profiles from limb sounding measurements. J Atmos Ocean Technol, 23: 1657-1667
[20]  Talagrand O. 1999. A posteriori verification of analysis and assimilation algorithms. Proceedings of Workshop on Diagnosis of Data Assimilation System. 17: 28
[21]  Tarantola A. 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Amsterdam: Elsevier. 5-22
[22]  Wang W, Cindy B, Michael D, et al. 2012. ARW Version 3 Modeling system User''s Guide
[23]  Xiao Q N, Chen L Q, Zhang X Y. 2009. Evaluations of BDA scheme using the Advanced Research WRF (ARW) model. J Appl Meteor Climatol, 48: 680-689
[24]  Zhong J, Huang S X, Fei J F, et al. 2011. Application of Tikhonov regularization method to wind retrieval from scatterometer data II: Cyclone wind retrieval with consideration of rain. Chin Phys B, 20: 064301

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133